
Vrije Universiteit Brussel
Faculty of Science

Department of computer science
2001 - 2002

Mobile Platforms
for

mobile agents

Verspecht Dimitri

Proefschrift ingediend met het oog
op het behalen van de graad van

Licentiaat in de Informatica

Promotor: Prof. Dr. Theo D’Hondt

Acknowledgment

First of all I would like to thank Johan Fabry. He gave me great support
and motivation and has sacrificed a lot of his time to read, correct and discuss
my work.

I would also like to thank Theo D’Hondt for allowing me to do this research
and Werner Van Belle who gave me great feedback during the meetings.

All the other PROG members and my fellow students deserve some words of
gratitude too, as they frequently helped me when I had some problems. They
also provided me with the necessary feedback and motivated me to keep im-
proving my work.

Final thanks go to my parents for the motivation and support and to San-
drine David who was so kind to check the entire text for grammar and other
language mistakes.

1

Mobile agents for mobile platforms

Dimitri Verspecht

May 26, 2002

Contents

1 Introduction 4

2 Mobile platforms 6
2.1 What makes mobile platforms popular 7
2.2 Differences between mobile and fixed platforms 8
2.3 The future of mobile platforms 9

3 Mobile agents 10
3.1 What are mobile agents? . 10
3.2 Borg, a mobile agent platform [6] 12

3.2.1 The parts of borg . 12
3.2.2 Programming in borg . 13

3.3 Benefits & disadvantages of mobile agents 16
3.3.1 General benefits of mobile agents 16
3.3.2 General disadvantages of mobile agents 17
3.3.3 Benefits of mobile agents on mobile platforms 19
3.3.4 Disadvantages of mobile agents on mobile platforms . . . 21

3.4 Mobile agents compared to other solutions 22
3.4.1 Java applets [14] . 22
3.4.2 Client server systems . 26

3.5 Conclusion: is mobility so important? 28

4 Case studies 31
4.1 The testing platform . 32

4.1.1 The test factors . 32
4.1.2 The test platform . 36
4.1.3 Types of mobility . 38

4.2 The mail server system . 39
4.2.1 General program structure 39
4.2.2 The program . 41
4.2.3 Program conclusions . 47

4.3 Meeting planner: . 50
4.3.1 General program idea . 50
4.3.2 The program . 52
4.3.3 Conclusion: Use weak mobility 56

4.4 The GPS route planning system 59
4.4.1 General program idea . 59

2

4.4.2 Overcoming some problems 60
4.4.3 General program construction 61
4.4.4 The program . 64
4.4.5 Program conclusions . 70

4.5 The advanced route planner . 74
4.5.1 When to use strong or weak mobility? 74
4.5.2 The advanced monitoragent 75
4.5.3 Program conclusions . 76

4.6 The Jump agent . 79
4.6.1 What to monitor: . 79
4.6.2 The jumpagent intelligence 81
4.6.3 How to use the jumpagent 83

4.7 Thesis case conclusions . 85
4.7.1 Case conclusions overview 85
4.7.2 Conclusion: weak and strong mobility help 86

5 Extensions and future work around this thesis 87
5.1 Extensions for borg . 87
5.2 Future work . 89

6 Thesis conclusions 90
6.1 General conclusion . 91

List of Figures

1 The visor prism, a sophisticated PalmOS device 4
2 A mobile agent network . 11
3 Advantages of mobile agents on mobile platforms: offloading pro-

cessor & memory intensive tasks 19
4 Advantages of mobile agents on mobile platforms: mobile plat-

form diversity. 20
5 General structure of the mail agent program. 39
6 The mailcase GUI: managing mails. 45
7 The mailcase GUI: viewing mails page by page or entirely 46
8 The mailcase GUI: searching emails 46
9 The meeting planner: agent distribution 51
10 The meeting planner: agent distribution when a mobile device is

used . 55
11 GPS navigating program when running completely local. 62
12 GPS navigating program when routeplanneragent exceeds either

the max memory use or max calculation time threshold. The
agents reside on different machines. 63

3

1 Introduction

Figure 1: The visor prism, a sophisticated PalmOS device

A few decades ago the PC was a heavy device the size of a large closet. Over
the years the PC evolved, it became more powerful and compact. Its function-
ality increased steadily with, as a result the full grown multimedia machine we
know today. Today the PC is a large box with much functionality like sound
and movie playback, games, programming, working,

A decade ago PC technology became so advanced that manufacturers could
shrink their machines even further. Mobile PC’s like laptops or even palmtops,
little PC’s that fit in the palm of your hand (that is why they are called palm-
tops) were created. In the beginning these little computers lacked much of their
big brothers functionality, but as they evolved this quickly changed. Nowadays
laptops are not far behind their desktop partners and even the palm sized de-
vices now have advanced functionality like programming, multimedia, network,
several work applications,

A modern palmtop has the following characteristics:

• A compact size in a shape that makes the device fit comfortable in the
palm of your hand.

• A processor which is optimized for low energy consumption

• Limited memory (2 Mb → 64 Mb) due to space constraints

• A large screen covering the most of the palmtops front side

• A stylus to tap the screen which provides the only way of inserting data
and navigating programs.

• A simple graphical OS (PalmOS, Windows CE, Pocket linux)

• A battery that provides at least several hours of autonomy

4

• Other outputs (speaker, led’s, IR)

• Expansion slot for expansion or memory modules (Visor, Pocket PC)

These palmtops have become tremendously popular in past years. Because
of this success there is a lot of research in the area of mobile computing. This
thesis is about the research of ”Mobile agents on mobile platforms”. Such palm
sized palmtops are called mobile platforms. Mobile because you can take them
everywhere with you, a platform because they can support agents.
These agents will be supported by a platform called borg. Borg is an agent
platform build on a virtual machine called pico. Agents are best seen as au-
tonomous objects. A program in borg is created in the same fashion as in any
other OO language. The difference between the two is that agents give you extra
functionality. I will go through these extras in the topic about mobile agents.
One of the most important properties is the strong mobility of the agents; this
strong mobility allows the agents to move from one platform on machine X to
another on machine Y while they are running/calculating.
Mobile agent platforms can work on different machines: handhelds, PC’s, GSM,
embedded computers,

This thesis will handle the topic of strong mobility. Chapters 2 and 3 are
an introduction to the topic of mobile agents. Chapter 2 handles with the
mobile computers. Here we zoom in the exact specifications, advantages and
disadvantages of the palmtop computer. Chapter 3 explains in more details the
working of our mobile agent platform borg. It also explains what mobile agents
exactly are and what their difference is from other agents (known from the AI
research). To point out the unique advantages of mobile agents we compare
them with 2 other popular solutions to create distributed programs: Java and
the Client/Server protocol.
Chapter 4 handles case studies. In total 4 case studies are examined: a mail
management system, a meeting planner, a route planner and an advanced route
planner. Each case is explained in detail and leads to some interesting con-
clusions. From all the cases we can conclude that the moving behavior of our
agents is often the same and can be programmed in a separate Jump agent. This
jump agent can be used in any program to make good use of the weak/strong
mobility property of mobile agents.
Chapter 5 will handle the future. The borg mobile platform is far from being
complete and extra functionality may greatly improve the use of mobile agents.
Chapter 6 summarizes all conclusions in this thesis.

5

2 Mobile platforms

Computers give users the benefit of manipulating and organizing data in an easy
way. Most users are content with a PC at home or at their work where they
can insert their data and work with it. Most commonly used features of a PC
are text processing, spreadsheets and multimedia. Some users however do not
have the luxury of being able to insert and process their data at home. They
have to collect, access and process data while they are on the move. Before the
mobile computers this was done with an agenda. Depending on how punctual
the user is, such an agenda can be a useful or messy tool. The agenda was used
to keep appointments, contact lists and short notes. Wouldn’t it be useful to
have the data manipulating and organizing skills of a computer with you all
the time? This is what the people of the Palm and Psion company must have
been thinking when they developed their first organizer. [2] It all started with
a very basic organizer by Psion. It had a two line display and 4K data memory.
The organizer had the same functions than an agenda: short notes, reminders,
calendar, contacts and as an extra also a clock and alarm. Inputting the data
on the small keyboard took longer than quickly writing it down. This and the
fact the organizer was expensive, still large and limited in functionality made
that the device didn’t have a real success.

Things changed when Palm introduced their first product: the Palm Pilot
[1]. This was the first mobile computer with the characteristics we find in all
today’s palmtop computers. It has a size that made it perfect to hold in the
palm of your hand (thus palm sized or palmtop PC’s) and a large screen taking
more than 60% of the device surface. It has no keyboard; inserting data and
navigating programs is done by a stylus. A stylus is used to tap on the screen,
these screen taps have the same effect as mouse clicks on PC’s. This method
makes it easy to navigate through programs. Data is inserted with graffiti,
a hand writing recognition tool. You have to learn an alphabet of simplified
characters that can be recognized by the device if you write them on the spe-
cial parts under the screen. The simple alphabet and writing method is easily
learnt and allows users to insert data almost as fast as just writing it down. The
device has a full graphical environment, which is easy to use and offers a lot of
functionality. It also has the fast and intuitive programs most users require: a
simple word processor, an agenda with reminder function, a clock, a to do list
(a list of things to do), a short memo manager, All these features made
and still make the Palm Pilot a record selling machine.

6

2.1 What makes mobile platforms popular

In paragraph above, we already partly explained what made the palmtop com-
puter so popular. This success wasn’t a coincidence. Palm did intensive research
before they launched their first product. They wanted to know what users really
expect and want from a mobile device. This approach proved to be very fruitful
and explains the success of Palm. Palm discovered following requirements for a
mobile device [1]:

• The device has to be small and light. Preferably so small that it can be
stored in a vest or a jacket pocket. Working with the device has to be
comfortable in all situations, this is why Palm made the device fit in the
palm of a hand.

• The device has to be easy to use: the device has to be usable for people
who do not have computer knowledge. This means that the graphical
interface of the operating system and programs has to be simple and self
explaining (through use of icons, text and others).

• Programs have to be fast: this is by far the most important requirement
for users of a mobile device. Most users use their mobile device for a short
period of time many times a day. When they want to save for instance
a phone number in the middle of a conversation they won’t appreciate
that the device takes several seconds to boot and several more to open the
requested application. This is why a Palm device is immediately ready to
use when powered on and PalmOS programs are extremely fast.

• Easy user input: a mobile device is useless if it doesn’t give the user a
fast and easy way to input data. A keyboard is the fastest way but would
make the device a lot bigger and heavier. The Palm� graffiti writing
recognition method and its simple alphabet is easily learned and provides
a data input speed almost equivalent to normal writing.

• Long battery life: having to replace batteries too often can lead to a sit-
uation where you need the device but forget to replace the batteries in
time. That’s why Palm made it a requirement to give users a battery life
of at least 2 weeks of normal use.

Palm implemented all these requirements and more into their palmtop com-
puters. This enables users to organize and input their data much faster than,
for instance, with an agenda. This, together with the low price for the devices
and a successful marketing strategy made the Palm Pilot devices tremendously
popular.

7

2.2 Differences between mobile and fixed platforms

What are the main differences between normal PC’s and palmtop PC’s?
This question is quite important because it can point out certain benefits of
mobile agents on mobile devices which do not apply on a normal PC. These
possible advantages will be discussed in chapter 3.

Mobile platform (Palm pilot) [3] Fixed platform (PC)
Limited processing power because of
space and energy consumption con-
straints (a typical modern PalmOS pro-
cessor runs at 33 Mhz)

Powerful processor (over 1 Ghz) with
lots of processing power

Limited memory (2 → 8 Mb on most
Palm devices) used for both data stor-
age and work memory

Large memories (several Gb for storage
and several hundreds of Mb work mem-
ory)

Limited network speeds (slow proces-
sor, some network hardware is missing
due to space constraints)

Fast network speeds (100 Mbit and be-
yond)

Small screen with small resolution (160
x 160 pixels)

Large screens with huge resolutions
(1024 x 768 pixels and beyond)

Compact, light & portable Fixed (difficult to transport) & heavy
Strong & designed to withstand shocks Vulnerable to shocks, easily damaged in

transport
Immediately ready to use when pow-
ered on

Requires a (long) time to boot before
the system is ready

Is frequently turned on and off Unfrequently turned and and off
Input through stylus taps and graffiti
(not suitable for long textual inputs)

Input through mouse and keyboard
(suitable for lots of text)

Simple user interface due to all above
constraints

Very sophisticated user interface with
lots of functionality

Bad program compatibility between
mobile devices of different brands (due
to different hardware and operating sys-
tem)

Reasonably good program compatibil-
ity.

Table 1: The differences between a PalmOS palmtop device and a standard PC.

As you can see, most differences are caused by the compactness and energy
consumption restraints of the mobile device. A palmtop PC is highly battery,
size and weight optimized which causes a tremendous sacrifice in processing
power, memory size, functionality and general speed.

8

2.3 The future of mobile platforms

Mobile platforms may be very popular, but will it remain that way? By analyz-
ing the past and the current situation, we can conclude that the mobile revolu-
tion has just started. First computers became mobile in the form of laptops. In
1996 the first Palm Pilot made it to the market and soon many other companies
followed in an attempt to make the PC fully mobile. Then the GSM revolu-
tion started. First a GSM offered no more features than an ordinary phone,
but soon more functionality was added. SMS (ability to send short messages),
WAP (internet on GSM), games, ... extended the abilities of GSM. Although
the mobile PC market and GSM is currently separated, experts believe they
will fuse together. Already now there are GSM/palmtop devices which offer the
best of both worlds: telecommunication (phone, email, chat, sms), multimedia
(audio, video, games), work (text and spreadsheet processors), etc. New GSM
evolutions like gprs, umts and I-mode will turn the GSM into a full grown mul-
timedia device.[4]
Palm and other palmtop producers also follow this trend and are creating devices
with built-in GSM/bluetooth functionality and expansions to upgrade their ex-
isting models. The GSM part will greatly expand the internet and communica-
tion abilities of the palmtop computer while the palmtop computer will give all
its advantages (work, multimedia, ...) to the GSM, thus creating a better de-
vice. If this fusion happens, the end product that will evolve from it is anyone’s
guess. What is certain now is that the revolution of mobile PC’s is just starting.
This thesis and the research it is based upon (mobile agents) is optimized for
this next generation mobile devices. This is because mobile agents can offer
lots of advantages but they need a (fast) mobile network (like future GSM’s can
offer) for that.

Recent articles state however that Palm is getting behind in the hard battle
between PalmOS and PocketPC. Where Palm still has a slow 33 Mhz processor
that is unable to do multimedia like video and sound (mp3), PocketPC offers
processor speeds of 400 Mhz now (by using the new StrongARM intel proces-
sor). The memory of PocketPC’s is now 64 Mb while the best Palm device
is stuck at 16 Mb. Just recently Ati introduced a new graphic chip that will
offer PocketPC advanced 2D/3D and video decoding capabilities. Palm still has
some advantages. Palm programs still run smoother than most Windows CE
programs. The new Windows CE 2002 based on the windows 2000 kernel may
change this situation and allow programs on PocketPC to run as smooth as on
a Palm device.
Just recently Palm announced that its new PalmOS will support new high speed
processors. This will bring Palm back in the fight.

No matter who wins, mobile device will continue to exist and evolve.

9

3 Mobile agents

In this chapter I will explain what mobile agents are and what kinds of mobility
exist. I will also explain the working of our mobile agent platform borg and
the 2 types of mobility it supports: weak mobility, that allows the agent to be
moved when idle, and strong mobility that allows an agent that is busy doing
something to be moved. Once this is explained I will give a short introduction
to programming agents in borg.

The second part of this chapter deals with the benefits and disadvantages
that mobile agents have on fixed and mobile machines. These advantages be-
come clearer when we compare our mobile agent solution with two other systems
to create distributed applications: Java virtual machine and the client/server
protocol.

3.1 What are mobile agents?

The concept of agents is fairly new and is best known in AI (Artificial Intelli-
gence) research groups. [5] The agents used in this thesis however have nothing
to do with their AI colleagues. Agents are pieces of software written in a high
level programming language. These agents can have varying intelligence (from
simple text copying to very advanced pattern recognition and intelligence). Dif-
ferent agents can work together on one platform. A platform is an environment
on a machine that is capable of supporting and running these agents. A plat-
form also offers communication capabilities between the agents, users and also
with other platforms. [5]

The platform here is borg [6], a virtual machine which provides a platform
for agents on the machine on which it runs. It also provides a programming en-
vironment and thus the ability to program new agents. Agents in borg are little
pieces of independent software. These agents run on the borg agent platform
that allows them to communicate with other agents or the outside world (user,
other system, application, data, etc).
An agent is called mobile if it has the ability to move freely from one platform
to another without losing its operability. This is only possible if the platform
supports this (borg does), the different PC’s are connected to a network and
when they all provide a platform compatible with the agents who are mobile. A
program in borg is made by making different agents to do the different jobs of
your program. It is like OO (Object Oriented) programming with the difference
that agents are fully independent and more sophisticated than objects. It is
not required for a borg agent program that all agents (if there is more than one
agent) run on the same machine [7]. It is perfectly possible that the different
agents from one program are all on different machines. It is even possible for
agents to move from one machine to another while the program is running. It is
this advanced functionality and mobility of agents that can offer many benefits.

10

Agents in borg offer two different types of mobility:

1. Weak mobility: this type of mobility allows the agents to be moved from
one machine to the other machine while they are idle. An example :

-We have a simple application consisting of a GUI agent to provide the
user interface and a calculating agent who performs the calculations in the
program. As long as the calculating agent is not calculating something, it
can be moved to another platform/machine using weak mobility.

This mobility moves the agent data from one platform to another using the
platform’s (borg) router. A special nameserver on the network is informed
about the move and will forwards all calls and messages toward the agent
to its new location.

2. Strong mobility: this type of mobility is identical to weak mobility with
the extra that it can also move agents that are calculating (not idle). This
means that if the calculating agent in the above example is currently cal-
culating it can still be moved. The advantages of this type of mobility will
become clear in the next chapters.

Strong mobility moves the agent in exactly the same way as the weak
mobility. In this case however the agent is calculating and has a certain
data stack (borg works with stacks). In order to allow the calculation to
continue on the destination platform this entire stack has to be transferred
to the the remote machine as well.

Figure 2: A mobile agent network

11

3.2 Borg, a mobile agent platform [6]

Borg is a virtual machine. It is built on the pico virtual machine developed by
Theo D’Hondt. [8] On top of this virtual machine borg has the needed features
to program, support and run agents. It also has the necessary features to allow
the agents to communicate with the outside world (through network, users, ...).
The borg agent platform supports mobile agents; which means that it has the
needed extras to support this mobile behavior of its agents:

• Network capability to allow the agents to move from one platform to
another.

• Communication: between agents on the same platform, between agents
on different platforms (through the network), with the user operating the
machine the platform runs on, possible other platforms/systems, ...

• Programming environment where you can program new agents and run
them on the platform running in the background. This can be in a textual
environment or in a full GUI (graphical user interface)

• Compatibility with many different machines and operating systems. This
to provide maximum mobility of the mobile agents who can then move
to different machines with different functionality. Currently only PC is
supported with the linux/unix OS. A version for PalmOS will be available
soon.

3.2.1 The parts of borg

Borg is mainly developed in the linux operating system. It consists out of 2
main parts [9]:

1. The borg core: this part is made out of portable code. This means it is
easier to adapt the code to work on other OS’es or machines. The borg
core contains all the code that implements all borg functionalities:

• The borg virtual machine: translates the borg agent code to machine
code and thus allows the execution of agents.

• The borg router: Provides borg with TCP/IP functionality so one
borg platform can communicate with other borg platforms on other
machines. This allows agents to communicate with one another even
when they are on different machines. The borg router makes use of
a nameserver who keeps track of all the agents current location. If
a message is passed to an agent the nameserver will tell on which
machine that agent currently resides so the router knows where to
send it to. The borg router has been extended recently to support
QoS (Quality of Service). This is a method to give messages passed
from one agent to another a certain priority. This priority allows the
message to be processed faster by the borg routers if it has a high
priority or to be delayed in favor of other messages when it has a low
priority.

12

• Borg native sockets: these allow borg agents to communicate with
other machines not running a borg platform. This communication
is done through TCP/IP sockets and allows agents to communicate
with other applications and machines like mail servers, web servers,
ftp, etc.

2. The borg UI: This is non portable code which means it is very platform
specific. The best UI for borg is supported under linux using KDE 1. This
UI provides a program environment where new agents can be created and
an interface to the agent platform that allows the user to communicate
with the borg agents. In linux this UI is a graphical text editor window
where you can edit, run and communicate with agents.

3.2.2 Programming in borg

Writing agents in borg is very simple. You just start typing the code in the
borg GUI window where it can be executed as well. A borg agent is written in
the pico program language. [8] Pico is a high level programming language that
is easily learnt by any programmer. The agents are developed like objects in
an OO (Object Oriented) program. You separate your program in its different
functionalities and program a different agent for each one. This means an agent’s
structure is much like a class used in OO programming.

{
{
aFunction(arguments):: {

code
};

anotherFunction(arguments):: {
morecode

}
}

But agents are not just classes which means they offer some extra function-
ality. This extra functionality is their ability to pass messages to each other.
These messages can be sent to themselves (a procedure call using a message) or
to another agent. Agents provide all the extra functionality to enable this mes-
sage sending. Some of these functions are naming (each agent needs a unique
name), getting that name, ...

{
\\Agent one sends a message

sendMessage(msg,agentref):: {
agentref->acceptMessage(msg,agentname)

};
messageOK(agentref,msg):: {

display(text(agentref) + " received message: " + msg)
}

}

13

{
\\agent two accepts a message

acceptMessage(msg,agent):: {
doSomethingWithIt(msg);
agentref->messageOK(agentname,msg)
}

}

Above code shows two simple agents. Agent one has a procedure to send a
message msg to another agent with reference (name) agentref. This agentref is
the unique name of the agent we want to send a message to. This name is used
as a reference to the agent and used by borg to route the message successfully.
A message is sent by calling a procedure on the receiving agent. The procedure
here calls acceptMessage and takes a message and an agent reference agentref
of the sender as arguments. Each agent keeps its own reference in the variable
agentname. Agent two receives the message, processes it and uses the reference
of agent one to send a receive confirmation to it. The above code allows 2 agents
to communicate with one another in a very easy way. The programmer does
not need to know on which machine both agents are.
A message passed from one agent to another is stored in a queue. This is
necessary because an agent can only do one thing at a time. Thus it can not
process a new message while it is calculating or still processing another message.
Messages can also be used to do procedure calls in the agent itself. This and
the queuing property of the messages allow the creation of some powerful tools
that allow other messages to be processed while the agent is busy:

{
continue_process: true; processdata: 0;

processLoop(arguments):: {
processCode;
...;
if(continue_process,

agentname->processLoop(arguments))
};

stopProcess():: {
continue_process:= false
};

statusProcess():: {
displayCurrentProcessData
...
}

}

14

The above program demonstrates a simple agent that can still process mes-
sages while it is busy. A process is busy and is looping (like most processes).
The next execution of the procedure in the loop is not done by a local call to
the procedure but by sending a message to itself. This message is stored in
the message queue. If other messages arrive they will be stored in the message
queue as well and will be placed before a next loop execution message. Thus the
message will be handled first and the loop will continue once all messages before
the next loop call message are processed. The above agent demonstrates the
easiness of implementing such a system. It demonstrates a looping process in
procedure processLoop that is looping by sending a message call to itself. Two
other procedures can stop the processloop or ask current information about the
process while the agent is working without aborting the current process.

15

3.3 Benefits & disadvantages of mobile agents

3.3.1 General benefits of mobile agents

Mobile agents can move between platforms while the program is running. This is
a very interesting feature of which we will examine possible benefits. The moving
itself can give programmers the ability to implement special strategies which
can solve certain problems. You can program the agents moving behavior to
implement smart systems. These smart systems are programs with intelligence
that can help themselves to run smoother in certain conditions.
A few examples:

• Sometimes a machine that is running an agent platform can be heavily
loaded. This can be because too many agents are currently running on
that machine or the machine is doing some other very processor intensive
tasks. Eventually the machine can become loaded to the extent that the
working of the agents is slowed down. This will not only slow down the
agents currently running on that machine but also all other agents that
depend on them. In general the entire program’s performance may suffer
greatly because of one agent running on an ”overloaded” machine. This
is a logical consequence of distributed programming. When one part of
such a system is slow and other parts depend on it, the entire program
can be slowed down. This effect is explained in the cases test environment
chapter. In such a case where the current machine is too loaded to allow
agents to run at full speed; the agents can move to another less occupied
machine. By doing this the program will keep running smoothly.

• Another advantage is in the area of distributed/parallel programming.
When a programmer wants to do very processor intensive tasks with his
agents, he creates several of the agents who will do the calculations and
make them spread out over different machines. The agents can be pro-
grammed in such a way that they will pick the powerful machines on the
network which are currently not heavily loaded. This will speed up the
calculation work and will not hinder other users on the network. This way
mobile agents can become a powerful parallel processing tool. [10]

• Mobile agents can also be used to create programs which can recover
themselves in case of a partial failure in the network. When the agents
are running on different machines they are vulnerable. This is proved in
the next page of this thesis.

One or more machines running your agents can crash or their connection
with the other machines can be severed by a network failure. In this case
your program will most likely stop functioning and data can be lost. You
can program agents which will duplicate the agents of your program and
recreate killed (crashed) agents in case of a failure. This way there is al-
ways at least one of each agent type operational so the program will not
suffer a failure. [13]

16

3.3.2 General disadvantages of mobile agents

While mobile agents obviously have some general advantages they also have
several disadvantages as well:

• As we said in the previous section, mobile agents are more vulnerable.
Agent based programs are distributed programs so they inherit some of
the disadvantages of distributed systems. If agents run on several machines
over a network the chance that the program fails due to either a network
problem or a machine crash increases. The possibility of a failure becomes
bigger when more agents of the program are running on different machines:

– Let be θ the total chance for a crash and α the chance a certain
machine crashes.

– On a single machine θ = α.

– When the program runs on n machines θ =
∑n

i=1 α + chance of
network crash.

– This means that the more machines are running our agents the more
likely our program will fail due to a failure in the network or due
to a machine crash. This can be solved by a partial failure recovery
system. Such systems are being researched all over the world and
also by a fellow student. [13]

• Another disadvantage is that program performance becomes dependant of
the speed of the other platforms the agents are working on. This causes
program response speeds to differ. If one or more agents of a program
run on a slow or heavily loaded machine they will slow down other agents
depending on them and your program itself. A small example:

-We run a distributed system and the program and its data are divided
over several agents and machines. When an agent needs information from
another agent it will send a message and wait for a response. This other
agent may be running on a slow system and is still calculating/processing
a previous message. If the agent is on a too slow platform the messages
sent to it will be accumulated in its message queue. Other agents will stop
working because they expect messages with crucial data from the agent
on the slow machine. In this case the entire program will wait for the slow
agent to finish working and is slowed down considerably.

This problem is also explained and illustrated in the cases test environ-
ment chapter further on in the thesis.

This situation can be solved by making agents intelligent enough to move
to another machine when their current one is under heavy demand or is
just too slow to do the requested tasks within a given time. This intelli-
gence can be something that is measuring the length of the message queue.
If it becomes too long this indicates the agent cannot process incoming
messages fast enough and needs to be moved to a faster machine.

17

• A last major disadvantage is that program response time and speed be-
come more dependant of network speed than available processing power.
This is best seen in the route planner case when the map and routeplanner-
agent are on different machines. The network can not handle the intense
network traffic between the two agents and the program slows down con-
siderably. This problem is also explained in the cases test environment
chapter further on in this thesis.
This means the network will become the bottleneck of your program. This
will certainly be true when the network or part of it is heavily loaded or
when one or more agents run on platforms with a slow network connection
(modem, GSM). Only one or more agents have to be on a machine with
a slow connection in order to slow down other agents dependant on them
and thus the entire program.

When we again take a program made of several agents running on different
machines in a network, the program and data are again divided over dif-
ferent machines and the agents continuously send messages to each other
with data to be processed. If the network is very slow in response time
the problem is obvious. A message between agents can then take several
seconds to arrive. If the sender is waiting for an immediate response this
will slow down both agents. If the network bandwidth is too low this
might give complications when messages with a lot of data are sent. If
an agent who processes such large messages is on a slow connection and
gets large messages from all the other agents, it will not be able to process
them in time. This is because it can take several seconds or even minutes
before a message is transferred to the agent.

This can of course again be solved by giving the agents sufficient intelli-
gence to move to machines with a fast connection. They can also move to
another network area when the network becomes loaded. However there
is a more suitable solution to this problem here: QoS (Quality Of Service)
which allows you to set a priority to packets sent over the network. Agents
could then be given a higher priority than other network operations so the
communication between them runs smoothly even on a loaded network.
[12] [16]

18

3.3.3 Benefits of mobile agents on mobile platforms

This thesis is about mobile agents on mobile platforms. We have seen that mo-
bile systems are somewhat like their bigger brother the PC. There are, however,
certain differences between the two (see table 1.)
By studying these differences more closely we can find two extra advantages :

Figure 3: Advantages of mobile agents on mobile platforms: offloading processor
& memory intensive tasks

1. Processing power & memory constraints: mobile platforms lack the pro-
cessing power and memory sizes of a PC. This greatly hinders the com-
plexity and functionality of mobile platform programs. However, we can
use mobile agents to provide the mobile platform with more processing
power and memory:

-The agents mobility can be used to offload some of the processor and
memory intensive tasks of a program to other (more powerful) platforms
(figure 3). Suppose our mobile device has a (wireless) mobile connection
and supports mobile agents. Our program consists of a UI (user interface)
agent and other processing agents. It is then possible that only the UI
agent and some other required agents run on the mobile platform and all
other agents (which do the calculations and thus need processing power
and memory) migrate to other more powerful platforms on the network.
This would take a significant load from the CPU and memory of the mobile
device and speed up programs. This migration can be performed by using
the weak or strong mobility property of the agents.

19

Figure 4: Advantages of mobile agents on mobile platforms: mobile platform
diversity.

2. Mobile platform diversity: another property of mobile devices compared
to PC’s is that they all have radically different specifications (Figure 5).
Mobile platforms are very diverse: they can go from the Palm Pilots and
Visor like devices discussed in this thesis to GSM, Windows CE Pock-
etPC’s, ... Take GSM’s for instance; those are all mobile devices with
different specifications (type/power of processor, screensize&type,data in-
put,memory, OS, programming environment,...) yet they offer all the same
functionality (calling, SMS, WAP, games, ...). With current techniques, a
program has to be especially designed for a specific type of GSM although
it always has the same functionality. It would be much easier to make
a program for such devices if GSM’s supported mobile agents. We could
then again split the program in several agents. The processing agents
which offer the program’s functionality could then remain constant while
only the UI agent has to be GSM specific (which uses the GSM’s screen
and data input to its best). That way a programmer only has to create
different UI agents for each type of GSM while the rest of the agents do
not need any changes. Figure 4 demonstrates this diversity. We have a
visor with a 160 x 160 sized color screen. It has a stylus for data input
which is good to navigate through programs but not to enter a lot of data.
The GSM has an even smaller screen and has only a numeric keypad to
insert data. The PC has a large screen and a mouse to navigate through
programs while allowing the user to enter large quantities of data through
a keyboard. Making a program that has to work on all these devices would
be much easier with agents; the central program remains the same while
only the agents needed for the UI are device specific.

20

3.3.4 Disadvantages of mobile agents on mobile platforms

Agents on mobile platforms suffer from the same disadvantages as on other ma-
chines. The programs on a mobile platform, with its agents spread over different
machines, are more vulnerable for a system/network failure. The program re-
sponse speed will also be dependant on network and platform loads.
The specification of the mobile device and its general network speed create a
new disadvantage:

Mobile platforms are best connected through the network with a wireless
solution so that their mobility is preserved. For GSM’s this is straightforward,
for other mobile platforms diverse network solutions exist. The main disad-
vantage lies in the fact that those wireless networks are slow. Most advanced
GSM’s have a network speed of 56000 kbit/sec (4Kb/sec) using the new gprs
protocol. Only few GSM’s already use this protocol and without it the network
speed is limited to only 9600 bit/sec (1 Kb/sec). Several companies now offer
wireless network solutions for Palm, Visor and pocket PC. These networks al-
low theoretical transfer speed up to 10 Mbit/sec which is very fast. While this
speed is reached on fast mobile devices like notebooks, this is not the case with
palmtops. The devices themselves are too slow to make any use of that speed.
This is because the network hardware is very simplistic (due to space & energy
constraints) and most of the network processing is done by the central processor.
Like mentioned in the introduction to mobile devices and palmtops this proces-
sor is not very fast. The fact that the processor spends most of its time running
your program, makes that it spends little time processing network operations.
So, in general, the network connection is slow (1-50 Kb/sec depending on the
current load of the processor) and thus inevitably becomes the bottleneck. This
means that moved agents from a mobile device to another machine require some
time, certainly if we use strong mobility and the agents stack has to be send
as well. When too many agents remain local the mobile platform becomes the
bottleneck because they ask more processing power than the processor in the
mobile device can offer. When too many agents are migrating the network will
become the bottleneck because it cannot transfer the agents and the messages
between them fast enough.

21

3.4 Mobile agents compared to other solutions

Now it is time to compare our mobile agents with some other solutions. We will
examine if the weak/strong mobility property of mobile agents is that unique.
Other systems like Java offer weak mobility and client/server which is a well-
known, widely used, architecture to make programs communicate over a net-
work. Java and client/server will be closely examined in order to find out if
they can offer the same advantages than our mobile agents.

3.4.1 Java applets [14]

Java is an object oriented programming language. The big strength of Java
is that users can download a Java virtual machine and are then able to run
Java applications and applets. Applets are small programs you can download
from the internet. They are automatically executed on your computer using
the Java virtual machine. Java applets are smaller than a compiled program;
this is because only Java bytecode (Java classes) are downloaded which are then
executed by the Java virtual machine. This Java virtual machine contains all
the libraries necessary to run any application/applet. This way the usually
large libraries do not have to be sent along which results in a smaller and faster
download. This way even very complex programs (like games, bank managing
systems, ...) can be downloaded very fast.
Java is an object oriented programming language. Java allows the creation of
two types of programs:

1. Applets: these are small programs created to be integrated into a webpage.
That way they can offer extra functionality to webpages like:

• Enhanced multimedia: since Java can interface with OpenGL and
DirectX it is able to enrich webpages with powerful 3D graphics and
sounds like 3D games, 3D interfaces, ... It also allows the integration
of other features like special buttons (with nice animation effects and
sound), simple games, etc.

• Enhanced communication features: like chat boxes and web cam in-
terfaces on web pages.

• Database support: Java has also SQL and other popular database
interface possibilities which allow applets to interface with an online
database. This allows users to access data in a database via a website.

• Search engines: a Java based search engine to search web pages,
databases, ...

• Secure login: Java applets allow secure login and data transfers on
websites. Java applets are used to manage bank accounts and other
private data that needs the high security a web browser can’t provide.

Java applets are compact in size because they need to be downloaded in an
acceptable time even on slow connection. This compactness means that
programmers usually limit Java applets in functionality.

2. Applications: Applications are executed locally and do not have to be
downloaded like applets. This means they can be larger and are thus able
to offer greater functionality.

22

Java programs which I will refer to as applets in the rest of this text can
vary from 3D games (interfacing with DirectX or OpenGL) to online database
management systems. In order to have web based features, Java programs also
have communication capabilities.

Couldn’t these Java applications, which are already much more common
than agents have the same benefits? Both systems use a virtual machine which
means those benefits are the same (platform independence). Java is an object
oriented programming language which most programmers know well so they can
easily start programming. Mobile agents however are a new approach and are
not as widely known as OO languages by programmers. Although agents may
have some advantages over object oriented languages they are not so well-known
where OO languages offer tons of programming strategies, design patterns and
documentation. [15]

The main difference between Java applications and mobile agents is that
Java applications have no strong mobility. But is this strong mobility really
necessary to obtain the same advantages? Let’s examine this by looking if the
Java applications can implement the advantages of our mobile agents:

• Java applications can be used for the same distributed processing as agents
can be. It is very common on the internet nowadays for computer users
to download small applets who then start some calculations when the
machine is not busy (screensaver or so). Java applets however can not
move to another machine when a current one is too heavily loaded. They
can however be moved to another machine when they are not executing.
In such applications, who allow users to share processing power, it doesn’t
really matter whether the machine is loaded or not, it is more a question of
having as much machines calculating as possible. In this field Java applets
can be as useful as agents.

• Since Java applications do not have strong mobility they cannot move to
another machine when it is heavily loaded. This is an advantage of mobile
agents that is very difficult to implement using Java applications/applets.

23

The general advantages of mobile agents seem to be unique. Java applets fail
to offer the very useful advantage of distributing processing power by moving
parts of the program to other machines when current ones are too loaded. How
do Java applets and mobile agents compete when we examine the advantages
on mobile platforms?:

• You can make distributed programs with Java which means you can offload
processing power from one machine by distributing the calculations over
several machines. You can follow the strategy of our agent based systems
and split a program in its functionalities. You can then implement these
functionalities in different applets and provide them with the necessary
means to communicate properly. The applets can then be distributed
to special servers where they can run. One applet remains on the host
machine and provides a UI for the user. In this manner processing power
and memory are offloaded to other machines. However, the fact that
applets aren’t mobile gives this approach many disadvantages:

– It is difficult to distribute the applets. Agents can move from ma-
chine to machine as long as the machines have a virtual machine that
supports them. The Java virtual machine also provides the commu-
nication between the agents wherever they are. Java applets can be
provided with instructions so they will move to a Java applet server
with the best specs, but implementing these instructions is very dif-
ficult. [15]

– Java applets are unable to move to other platforms once they are
running, thus they are unable to respond to heavy server or network
loads. This will seriously jeopardize program performance as only one
applet of the distributed system has to be on a slow machine and/or
with a slow network connection to slow down the entire program.

• Java applets are perfectly able to handle platform diversity. As with mo-
bile agents we can put the main functionality of a program on powerful
servers while the mobile machines (GSM, Palm, ...) are only provided
with a unique UI especially designed to work better on the specific mobile
machine.

• Java applets can also provide a more unified programming environment.
All mobile machines only need to have the Java virtual machine installed
and whatever program created in whatever Java programming environ-
ment will run on it.

24

As we can see, Java applications have difficulties in implementing the ad-
vantages of mobile agents; this is because of two reasons:

1. The platform of mobile agents automatically provides the communication
between agents wherever the mobile agents are currently running. Al-
though Java uses a very simple interface (Java RMI) as well, interactions
between two Java programs have to be programmed with more care.
[9] [6]

2. Agents in a mobile agent based system can freely move from one machine
to another while the program is running. Agents are also capable of mov-
ing when they are busy performing a certain task (strong mobility). It
is this lack in strong mobility that disables Java applets/applications to
offer the same advantages than our mobile agents.

We can conclude that Java programs may have certain advantages on mobile
platforms. However, the advantages they offer are in a different area than our
mobile agents. The lack of strong mobility can not be compensated by the weak
mobility provided by Java. Java programs are thus unable to reproduce the
same advantages than mobile agents.

25

3.4.2 Client server systems

Compared to the other solutions, client/server is not a programming environ-
ment nor a programming language but a type of protocol. The client/server
protocol is used by many programs which have to communicate certain data over
a network. Web browsers, internet games, chat programs are all client/server
based. In the client/server protocol you have two different types of communi-
cating programs:

• The server: the server is a program running on a powerful machine and
offers certain services to other users. It contains most data and has client
management systems. An example of such a server is for instance a 3D
gaming server. The server allows multiple clients to log on. The clients
all run a 3D game that is constantly sending data (position & direction,
player, type of weapon, current action, ...) to the server. The server
then forwards all data from one client to all other clients so that they are
informed of the other player’s location and actions. That way, the clients
can play against foes controlled by other people in the 3D game.

• The client: runs the program of the user and is connected to a server for
certain services. In our 3D gaming example the client connects to the 3D
server in order to get the data from the other players so the user can play
with/against them.

Almost every known programming language gives programmers the ability
to create client/server based applications. Thus most programmers know how
to implement a client/server based application. However, these systems have
the same drawback as Java programs. They are not mobile and are incapable
to reproduce the same advantages as our mobile agents:

• With client server systems you can easily do distributed calculations. In
this case the server is sending packets to the connected clients containing
calculations. When the client is done, it sends the result back to the server
which then processes the result and sends a new set of calculations to the
client. Java based programs for instance use this client/server system for
communication between different programs.

• Offloading calculations from workstations with client server based systems
is also commonly used.

Example: a database management program is running on the server. The
client sends database operations to the server which will perform these op-
erations on the database and return the result to the client. Old database
systems made the server do all the work. If the client needs two tables
to be joined, the server would do this and send the complete end result
to the user. Nowadays the server only returns database data and checks
its consistency. The client then does the user requested operations on the
received data.

26

While in this example calculation power is divided over clients and server
it is very difficult to offload processing power and memory usage of a sim-
ple program using this approach. This would require a server doing the
processing part of the program and a client on the users machine commu-
nicating with it. The server thus has to offer all services for all programs
a user can run. This is very complex and since client/server systems do
not have any form of mobility it will quickly result in overloaded servers
and networks.

This problem can be partly solved by allowing the client to upload the
tasks it wants to do remote to the server. This however will result in
higher network traffic since the entire server program has to be uploaded
to the server. You could implement a platform on the server which can
execute certain program code uploaded to it, but this would be complex.
Mobile agents and Java offer such a system by default.

• Client/server systems can handle the diversity in the mobile market. Since
the programs functionality can reside on the server and the client is the
only part that has to be device specific. However, since client/server
based systems do not use a virtual machine, the client has to be especially
programmed in a language environment for a specific (mobile) device. This
causes the development of the client to be much more complex compared
to agent or Java based approaches.

• Client server based systems also do not provide a general programming en-
vironment since they are not a programming language or virtual machine,
but a protocol that can be used in many different programming languages.

Client/server based systems are easy to implement and almost all program-
ming environments (also mobile programming environments) support them.
They can be used to offload simple distributed calculations. However split-
ting an ordinary program and distributing it over the net is far more complex
than in the case of Java programs or mobile agents. The lack of any true form
of mobility makes that distributed systems based on the client/server system
cannot handle situations where a server overloads.

We can conclude that client/server based applications offer almost none of
the advantages we find with our mobile agents or even Java programs.

27

3.5 Conclusion: is mobility so important?

It looks like none of the above solutions can match the advantages provided by
mobile agents. Java applets and the client/server protocol are very powerful
tools too, but their lack of strong or any form of mobility and the bad com-
munication support between client and server on different machines impeache
them to match with mobile agents. Mobile agents are truly programmed to be
mobile and communication between agents is as straightforward as communica-
tion between different objects in an ordinary program.
Some readers may have doubted the usefulness of mobile agents. But, as we can
see, this property of being able to move from one machine to another ,whether
the agent is busy or not, has some unique advantages:

• The ability to offload processor intensive parts of your program to another
platform.

• Ensure fast execution of a program by moving agents to a machine with
a faster processor/network connection.

• The ability of agents to use their mobility to divide processing power.

If we look at our ultimate goal, making programs for mobile devices run
faster, some readers might think all above discussed approaches will work as
well without mobile agents:

• For client/server based applications and Java applets there will have to
be powerful servers which will execute the processor intensive tasks. This
might work since mobile programs are very simple and basic compared to
PC programs and they will never consume much memory and processing
power. While this might work now, we claim this will not be so straight-
forward in the future:

-Five years ago mobile devices were rare. GSM’s were just invented and
mobile devices were still slow, heavy and expensive. Within just 5 years,
we had a major growth of mobile devices. Within a few years from now,
half the computers in the world can be mobile. Early GSM’s had very lim-
ited functionality, but recent models have a decent graphical screen with
a simple processor. This means the GSM is becoming a mobile computer
as well. If we take all GSM’s as mobile devices, everybody will agree that
there are already now more mobile than fixed PC’s in the world. Whether
or not current GSM’s are true mobile computers can be a topic of discus-
sion right now. The next generation of GSM’s which will support gprs,
umts and I-mode [17] will not need this discussion anymore. Those de-
vices which are already in use in Japan right now, have internet, video
and audio playback and many more multimedia features. These devices
are undoubtedly true mobile computers.

28

Placing the servers and networks that can handle the distributed programs
of that many mobile devices will be a costly operation. This is because
the entire network infrastructure with many powerful computers is already
available: the internet. Each processor of a computer connected to the in-
ternet is, on average, less than 10% used by the average user. This means
that all the computers on the web offer a lot of available processing power.
In the future users may allow their machine to become a platform (for a
small fee) for mobile agents. This will allow their machines to support
agents and process certain tasks while it is idle. The development of such
systems is done already today.

• For simple distributed calculation tasks Java programs or client/server sys-
tems may still be adequate to implement a system like described above.
For more complex programs however we require mobile agents: users will
not appreciate it if they can’t run a processor intensive program because
in the background, a process hungry Java or client/server application is
running and can’t be stopped until it has finished with whatever it is do-
ing. So in this case an agent based distributed system would be better.
An intelligent agent that performs calculations on a users machine will see
the increased load on the CPU and decide to move to another platform.
If it has migrated, the user’s PC is free for whatever he/she wants to do.
Once the agent is on his new machine, it continues its calculations like it
had never been interrupted.

• The mobile property of agents can also be useful in ways that cannot pos-
sibly be implemented with a Java or client/server program. Let’s look at
the following example:

Example: a land surveyor wants to measure certain data of a piece of
land. He has a GPS and measures his position at each corner of the
land. These positions are entered in his mobile device. This mobile device
triangulates all given positions in order to calculate the area of the land.
The program itself consists of two or more agents. One or more that
accept user input and display the information on the screen and another
that does the triangulation and surface area calculations.
When the land surveyor starts, little data is entered and the data is quickly
processed. After a while, the process starts to slow down. At a certain
point the calculations start to take too much time and the agents which do
the calculations decide to move to a faster platform (in between or during
calculations). This way the speed of the program is maintained.

29

This is a situation that Java programs or client/server systems can not
implement. Either the remote calculation applet/server is immediately
started (even though it might never be necessary to use it) or the pro-
gram is run only locally. There is no way a part of the program is going
to copy itself during calculations from one place to another when using
Java programs or client/server systems.

It is this property that makes mobile agents so fit for mobile applications
as we will discuss further on in this thesis.

We can already conclude that the mobility of agents definitely has unique
benefits. The cases will further examine these possible advantages and disad-
vantages.

30

4 Case studies

The case studies will be used to see if the weak/strong mobility property of
agents in agent based programs offer real benefits on mobile platforms.
In order to find this out we will examine four different cases, each with a different
objective:

1. Mail agent case: this is an agent based mail management system. A server
agent gets mails from a mailserver and stores each mail in a mailagent. So
each mail is an agent. Downloading a mail is done by moving the specified
mailagent from the remote mailserveragent to the local machine. The
mailserveragent provides functions to search and manage the mails in the
mailagents. This case demonstrates the easiness of making a distributed
system with agents. It also shows the easiness of implementing weak
mobility using agents.

2. Meeting planner: this case is developed by Pieter Verheyden.[10] It is a
case that allows users to plan a meeting. Each user has his own meeting
planner agent and all these agents communicate with one another to come
to a successful meeting. A meeting is successful if the place where the user
wants the meeting is available at the given date and time and when there
are enough participants.
This case is a true peer-to-peer system. This case is used to find out if a
distributed system runs better/worse when a slow machine like a palmtop
PC joins the distributed community.

3. Route planner: the route planner demonstrates the use of strong mobility.
In this case not only processor power but also memory use is important. A
route planner needs a large map thus there will not be much free memory.
On top of that the route planning calculations take a lot of work memory.
To prevent the palmtop from running out of memory the calculating agent
is moved when free memory is low. This case demonstrates the ease of
implementing and using strong mobility in a program and will test if using
this property has impact on program performance.

4. Advanced route planner: this case is basically the same as the above route
planner but has one big difference. While the route planner above demon-
strates the use and possible advantages of strong mobility, this route plan-
ner will go even further. It will try to find out what type of mobility is
best in a certain situation. When is strong mobility the best choice or
when is weak mobility the best choice. Weak mobility may be preferable
on slow network connection where the moving of the agent and its stack
would take too much time. In the case of weak mobility calculations will
be aborted and data already calculated will be lost. Strong mobility will
move the agent slower, but once it is moved the calculations continue from
where they where interrupted.

Eventually we will try to make an agent that will choose how to move a
calculating agent in a certain situation, the jump agent. This jump agent has
a high intelligence and tries to get a maximum performance gain by choosing
between different types of mobility to move the calculating agent.
All the case code can be found in the borg repository. [9]

31

4.1 The testing platform

There are several important factors when testing a distributed agent program
in terms of performance. Next chapter will explain what those factors are and
why they are important.
The second part of this chapter describes our ”test environment” for our cases.
This test environment simulates different conditions so we can test our cases in
different situations and thus come to a better conclusion.
The last part explains the types of mobility that will be used in the different
cases.

4.1.1 The test factors

There are two factors that have a big influence on the performance of a dis-
tributed program: network and processor speed.
Like any program a distributed program is largely dependant on the processing
power available. Unfortunately processing power distribution is very important
too in terms of performance of distributed programs. A simple example will
illustrate this:

We have three agents, all three agents are on a different machine and are
working on a distributed problem. In order not to complicate things we assume
that the three machines are connected to a fast network with no noticeable
delays. They all start the same calculations and when they have finished they
will send the results to each other. After they have compared the results they
will start a new calculation. We have two different situations now:

1. All three machines have the same processor speed. Lets assume we have
three machines with processing power 100 which means they can perform
100 calculations per second. If the agents have to perform a calculation
that requires 300 steps, all will calculate about 3 seconds:

Time Agent 1 (100) Agent 2 (100) Agent 3 (100)
1 start calculation start calculation start calculation
2
3 Done Done Done
4 Comparing Comparing Comparing
5 start calculation start calculation start calculation
...

Tab 2: Distributed system with all agents on a system with equal process-
ing power.

We can see that each set of calculations takes 3 seconds for all agents. All
agents finish at the same time and no agent has to wait for the results of
an other agent.

32

2. The situation is entirely different when the agents are on machines with
different speeds. Lets assume that agents 1 and 2 are on a machine with
speed 150 and agent 3 on a slow machine with speed 50. Logical reasoning
would tell us that the average speed of this system is (150 + 150 + 50)/3 =
117 and thus faster than the average speed of 100 from previous example.
So we expect a performance gain of our distributed program since more
processing power is available:

Time Agent 1 (150) Agent 2 (150) Agent 3 (50)
1 start calculation start calculation start calculation
2 Done Done
3 Waiting Waiting
4 Waiting Waiting
5 Waiting Waiting
6 Waiting Waiting Done
7 Comparing Comparing Comparing
8 start calculation start calculation start calculation
...

Tab 3: Distributed system where the machines the agents reside on have
different processing speeds.

Unexpected, our distributed system with 50 more total speed performs
only half as fast as the previous example system. The table immediately
shows what is causing this unexpected bad performance. Agents 1 and 2
with their high processing power finish their calculations in a fast 2 sec-
onds. However, since they have to wait for the result of agent 3 before
they can continue they have to wait until agent 3 finishes. Agent 3 with
only speed 50 takes 6 seconds to complete the calculations and only then
all agents can compare their results and start a new calculation.

This example may be extremely simplified and is really the worst case
scenario, but it clearly shows that average processing speed tells nothing
about the possible performance of a distributed program. The perfor-
mance depends greatly on the slowest component in the system. Many
will say that this problem can be solved by making your program the way
that agents 1 and 2 can do other things while waiting. This will indeed
solve the problem, but in a real distributed agent program each agent has
a specific functionality and thus sooner or later one or more agents will
have to wait for the result of a calculation that can only be performed by
an agent on a slow machine. If one agent is on a much slower machine
compared to the rest this will cause a negative performance hit, no matter
how fast the other machines may be.

33

A second very important factor when measuring the performance of dis-
tributed systems is the speed the different machines can communicate with one
another. A slow network connection between two or more machines in a dis-
tributed system may cause a bigger performance drop than a slow machine in
the system. To illustrate this we can take above example. When the agents stop
their calculations, they will send the results to one another. They will compare
these results which will take one second and then send a confirmation to start
the next calculations. The agents do not compare or start a new calculation
before all messages have been received.

We can again distinguish two extremes:

1. All machines in the distributed system can communicate through a fast
network with one another. On a fast network it takes only 1 second to
send a message from one agent to another.

Time Agent 1 (100,fast) Agent 2 (100,fast) Agent 3 (100,fast)
1 start calculation start calculation start calculation
2
3 Done Done Done
4 send result 1 send result 2 send result 3
5 receive result 2,3 receive result 1,3 receive result1,2
6 comparing comparing comparing
7 send confirm 1 send confirm 2 send confirm 3
8 receive confirm 2,3 receive confirm 1,3 receive confirm 1,2
9 start calculation start calculation start calculation
...

Tab 4: A distributed system with all agents connected with a fast network.

Through a fast network no agent has to wait for another and our dis-
tributed system can work at full speed taking optimal advantage of the
available processing power.

2. Two or more machines in the distributed system have a slow network con-
nection. All machines still have the same processing power. Agent 1 and
2 have a fast network connection that can send any message in 1 second.
Agent 3 is unlucky again and his machine has a very slow network con-
nection with agent 1 and 2. It takes 3 seconds to send a message to agent
1 and 2 and it takes 3 seconds to receive a message from agents 1 and 2.

34

Time Agent 1 (100,fast) Agent 2 (100,fast) Agent 3 (100,slow)
1 start calculation start calculation start calculation
2
3 Done Done Done
4 send result 1 send result 2 send result 3
5 receive result 2 receive result 1
6
7 receive result 3 receive result 3 receive result 1,2
8 comparing comparing comparing
9 send confirm 1 send confirm 2 send confirm 3
10 receive confirm 2 receive confirm 1
11
12 receive confirm 3 receive confirm 3 receive confirm 1,2
13 start calculation start calculation start calculation
...

Tab 5: A distributed system with a slow network connection between two
or more machines.

The slow network connection between agent 3 and the other agents is dis-
astrous for the performance of our mobile system. Agents 1 and 2 quickly
receive a message from one another. After that, both agents have to wait
until the message from agent 3 is received. In this case the available pro-
cessing power is partly lost due to the slow network connection.

Above examples illustrates clearly that the performance of a distributed
system greatly depends on processing power and network speed. In the case of
processing power, distributed systems with a PalmOS device will have problems
as seen in table 3 because the PalmOS device is much slower than the other ma-
chines in the network.

Palm devices also suffer from a max network speed limitation. The network
operations that are performed by the network hardware on a PC are partially
done by the processor in mobile devices. This is because this extra hardware
cannot be fitted into the small space of a network upgrade module and to limit
power requirements. This causes the maximum network speeds on mobile de-
vices to be much lower since the processor of a mobile device is already much
slower than its PC counterpart and it has to perform extra operations to per-
form network operations. On a Palm device who’s processor only runs at some
30 Mhz this maximum network speed limitation is very obvious (some 10 - 20
Kbit/sec maximum). On other mobile devices that now come with new 400
Mhz processors this limit is less apparent (maximum transfer speeds of some
100 Kb/sec) but it becomes questionable if we can still call such devices slow.
Since we examine our cases on slow mobile devices like a Palm, we will assume
that the maximum network bandwidth for such device is 20 Kb/sec.

35

4.1.2 The test platform

The cases will be tested in several different situations to form a conclusion:

• All machines are fast with a fast network connection

• All machines are fast with a slow network connection

• All machines but one (our Palm device) are fast with a fast network con-
nection between the Palm device and other machines. The network be-
tween the other machines is fast.

• All machines but one (our Palm device) are fast with a slow network
connection between the Palm device and other machines. The network
between the other machines is fast.

The test platform consists of only PC’s, connected with a 10 or 100 Mbit
network connection. This means our testing environment is the fast-fast case.
In order to test the other situations it is necessary to simulate a slow machine
and/or network.

Simulating a slow machine can be done by putting wait() procedures in
between the normal calculations procedures. The wait() procedure just waits
X time before allowing a further piece of code to be executed. This wait()
procedure is simply to implement:

wait(time) :: {
i : time;
display("waiting..." + eoln);
while(i>0, i:=i-1)

}

To simulate a fast machine this wait time is 0 or small. To simulate a slow
machine this wait time is set to a higher value.

Simulating different network speeds is a little more complex. A network has
two properties that are important to evaluate its speed:

1. Bandwidth: This property is known by most PC users. It indicates the
amount of data that can be transferred over the network in a given time.
Usually this speed is expressed in Kbit/sec or Mbit/sec where a 8 Kbit
= 1 Kbyte and 8 Mbit = 1 Mbyte. Simulating this is very difficult and
involves putting a wait() in front of a message send with the wait time
proportional to the size of the message to send. Since borg has no memory
monitoring this is very difficult to accomplish and thus the wait() uses a
guess of the estimated message size. Since the only place where messages
of larger than some Kb are sent is in the case of agent moves, this is the
only place such delay waits are simulated.

2. Response time: Less known by PC users and well-known by online gamers
is the response time of a network. This is the time it takes for a signal to
travel from one point in the network to another. This delay depends on
three factors :

36

(a) The number of routers between the two points in the network: a
router needs some time to process and forward an incoming packet.
When the router is loaded and has to process many packets, our
packet can be placed in a queue where it has to wait some time or
can even be erased in which case the packet has to be send again.

(b) The network load: when a part of the network is loaded there will
be a lot of collisions. In case of a collision the packet is lost and has
to be send again.

(c) Less important is the total cable length between the two points in the
network. Since signals can only move at 2/3 time the light of speed
in cable networks and at the speed of light itself in optical networks
it takes a small time for a signal to travel a certain distance over a
network. This time can be estimated by the formula time = length
/ speed.

This response time is measured in ms and is usually small when machines
are close to one another (on UTP, coax, optical fibre, ... networks). In
our testing environment where the machines are connected through only
some meters of cable, one router and an average loaded network, these
delays will remain small and will not exceed 20 ms. A mobile device that
uses a mobile network solution like GSM has a much larger delay. This
because the signal has to travel through different types of networks and is
processed many times. In this case delays become larger and easily exceed
200 ms. Such a delay is easily simulated by placing a wait() before the
message send that will hold the message X time from being send. This
has the same result as the delay on a network.

A general wait() to put in front of a message sent to simulate different
network response time and bandwidth is:

wait(delay,size,bandwidth):: {
i: (delay + size / bandwidth) * factor;
display("waiting..." + eoln);
while(i>0, i:=i-1)

}

Delay contains the network delay to simulate, size and bandwidth give the
size of the message and the network bandwidth. All this is to simulate the
time it takes to send a message over the network. Factor contains a machine
dependant constant that multiplies the result from the formula (delay + size /
bandwidth). This is necessary because the time it takes to execute 1 loop in
wait is not equal with 1 ms.
Testing the program performance itself is done by starting a timer just before
the calculation, we like to monitor, starts. When the calculation finishes the
time is returned in seconds. Seconds are good for large delays, but they are
inadequate for more precise monitoring. Unfortunately borg does not support
anything else but seconds.

37

4.1.3 Types of mobility

The cases will use three different types of mobility. To prevent confusion in
further chapters I will explain the different types here:

• Weak mobility: this type of mobility moves an agent who is currently idle
to another machine. Only the agent (without its stack) is transferred.

• Strong mobility: moves an agent who is currently calculating to another
machine. When the agent is transferred, it will continue the calculations
on the remote machine like it was never interrupted. Strong mobility
requires the agent and its stack to be transferred.

• Forced weak mobility: this type of mobility is new and will move an agent
who is currently calculating using weak mobility. The agent’s calculations
are aborted, and its stack is emptied. The only data that remains in the
agent’s stack is the procedure call. By leaving this procedure call in the
stack, the agent will automatically restart its calculations once moved.
Moving an agent using forced weak mobility only requires to transfer the
agent and its small stack to the other machine.

38

4.2 The mail server system

This case demonstrates the ease of moving agents between machines. It shows
that the use of weak mobility using mobile agents is very simple. The case is
a simple mail managing program that can download, view, manage and search
mails. The big difference with a standard mail manager is that the mails are
not stored in some database. In this case every mail is a mail agent. Only the
reference to this mail agent is kept in a database.
The mailserveragent runs on a remote machine. This agent downloads mails
from a mail server. It creates a mailagent and stores all mail data in it. The
mailserveragent only keeps a reference to this mailagent for future calls and op-
erations on it. This mailserveragent can manage the mailagents and can search
their content. The usermailagent runs on the local platform (our mobile device),
providing a user interface through a GUIagent. This usermailagent is respon-
sible for managing and searching mailagents whether they are locally or not.
When the user decides to view an email the mailuseragent will get the list of
reference to the mailagents from the mailagentserver and give the mailagent the
order to move to the local machine. At that point the mail can be read without
being connected to a network. A user also has the ability to view the mail
page by page. In this case only parts of the content are transferred. This al-
lows quicker viewing of the mail but will cause loading times between each page.

In the following sections we work out this idea to demonstrate the ease of
creating a distributed system with mobile agents. It also demonstrates the
simple moving behavior of agents.

4.2.1 General program structure

Figure 5: General structure of the mail agent program.

39

This program consists out of 5 types of agents:

1. GUI agent: this agent is the GUI version of the usermailagent. It is re-
sponsible for the communication between the user and the usermailagent.
It provides a simple GUI that allows the user to use all the functions pro-
vided by the other agents in the program. This agent’s job is to translate
user actions into messages that the usermailagent can understand.

2. Mailagent: this type of agent is used to represent one email. Each received
email is stored in a unique agent. This agent keeps all necessary informa-
tion of the email (sender, date, subject, content). This agent also has the
necessary functionality to search for certain keywords in his mail content
and subject. It is capable of moving itself from one machine to another
when ordered to do so by the mailserveragent or mailuseragent.

3. Mailserveragent: this agent can download mails from a mailserver and
keeps a list of references to al the mailagents. The mailserveragent has
the following functions:

• Retrieving mails from the mail server

• Keeps a list of references to al the mailagents

• Searching mails when usermailagent is uncapable to do this opera-
tion. (Machine where mailuseragent resides on is too slow).

• Send the list of references to the mailuseragent

4. Usermailagent: this is an agent that runs on the local machine and provides
the user with the ability to communicate with the mailserveragent and
offers extra functionality like viewing and managing mails.
The user to view a mail in two ways:

(a) The mailuseragent orders the mailagent to move itself to the mobile
platform. For this it first gets the list of references to all mailagents
from the mailserveragent.
When the agent is moved, it will display the information to the user.
Downloading the mail like this may take a while since the entire
mailagent has to be transferred, but when the agent has moved the
entire mail can be viewed quickly.

(b) Only parts of the mail content are transferred. This allows the user
to read his mail page by page. The mail is displayed more quickly
(only part of content and not entire mailagent is transferred) but
there will be a downloading delay between each page.

Since communicating with a real mailserver is quite complex and the main
idea of this case is to demonstrate mobility, we will simulate the downloading
of mails using an extra agent:

• Mailserver: this is a simple agent which simulates a mail server. Its only
functionality is that it can communicate with the mailserveragent and that
it can upload emails to it.

40

4.2.2 The program

Implementing the mailcase is quite straight forward. I will explain the program
agent per agent by telling how it performs its tasks. I will illustrate some of the
key functions of an agent with code. The code is very readable and is easy to
understand:

• Mailagent: the mailagent is one of the most easy agents of the program.
The mailagent is a mail, so it holds everything a mail is supposed to
hold. It has the necessary variables to hold the subject, sender, receiver,
time of receiving and contents of a mail. Most of the procedures in the
agent are quite simple and serve mostly for communication between the
mailagent and other agents. These procedures allow other agents to ask all
or specific data from the mail and to change certain data. The mailagent
also contains the code to search in its own data. This search algorithm
is quite complex and checks if a string of keywords is present in subject
and/or content. Date, sender and receiver comparing functions are also
implemented to offer even greater searching power.

searchInText(keywordstring,tobesearched):: {

pos:1;

result:1;

busy:true;

searchstring: keywordstring;

while((busy & (result>0)), {

‘ extract keyword out of string

pos:=strstr(searchstring," ")-1;

‘ Last keyword has no space

if(pos = -1, { pos:=length(searchstring);

busy:=false }

);

keyword:substr(searchstring,1,pos);

searchstring:=substr(searchstring,pos+2,

length(searchstring));

‘ search the keyword in the subjectstring

result:strstr(tobesearched,keyword);

pos:=0

}

);

if(result>0,true,false)

}

The above piece of code shows how the text search algorithm is imple-
mented. It checks the tobesearchedstring to see if it contains all the key-
words from keywordstring. If all keywords are present it returns true, if
not, false.

41

The procedure that instructs the mailagent to move to another machine
is very simple:

jumpTo(machine):: {

agentmove(machine)

}

Note that it does not check whether or not the machine exists. If the
machine does not exist the mailagent will move anyway and will be lost.

• Mailserver: this agent is the most simplistic one of the program. It only
contains a set of mails stored in tables and the code that allows the
mailserveragent to download them.

sendMail(ref):: {

tmpmail:mailtable_.getElement(1);

mailtable_.deleteElementAtIndex(1);

ref->receiveMail(tmpmail)

}

The above procedure sends a mail to the agent ref when called. Tmpmail
is a table containing the mail data:
[subject,sender,receiver date&time, content]

• Mailserveragent: this agent has the code to download mails from the
mailserver. It downloads a mail and creates a mailagent for each mail.
To allow further communications with the mailagents a reference to each
mailagent is kept in a table.

‘ Creating the agent and apply its mail data agentref:

new(mailagentname,load("thesis/mailcase/MailAgent.borg"));

agentref->setMailData(receiver,subject,ownemail,content,timrec);

‘ Store the mailagents reference in the table.

mailagenttable_.addMailAgent(agentref, false,1);

This code creates a mailagent with mailagentname as name. The reference
to this agent is stored in the mailagenttable table. Each mailagents name
has to be unique.

42

mailagentname: makeMailAgentName(timereceived)+eraseBlanks(subject);

This line makes a unique name for each mailagent. The name consists
out of the received time (returned by makeMailAgentName(timreceived))
and the subject. In the subject the blanks need to be removed since they
would make the agentname corrupt.

This erasing is done by eraseBlanks(string):

eraseBlanks(inputtext):: {

oldstr: inputtext;

newstr: "";

pos: 0;

while(pos < length(oldstr), {

size: length(oldstr);

pos:= strstr(oldstr," ")-1;

if(pos= -1, pos:=size,

{

newstr:= substr(oldstr,1,pos);

newstr:= newstr + substr(oldstr,pos+2,size)

});

oldstr:=newstr

});

oldstr

}

The mailserver has many other procedures to allow it to communicate
with the mailagents and usermailagent. It is also capable of searching
mails. This code is duplicated in the usermailagent (and explained there)
to allow searching of mails when not connected to the mailserveragent.

• Usermailagent: has procedures that allow it to communicate with the
mailserveragent, mailagents and GUIagent. It keeps a table of references
to the mailagent identical to that of the mailserveragent. This allows the
mailuseragent to access mails that have been downloaded when the con-
nection to the mailagentserver is severed. It also contains the code that
searches mailagents. The search procedure allows the user to search all
mailagents with certain parameters. Only agents which comply with all
the given search parameters are included in the search result:

– The subject contains all the given subject keywords

– The content contains all the given content keywords

– The sender address is the same as the given address

– The received date is the same as the supplied date

43

startSearchMails(subjectkeywords,contentkeywords,

datedata,sender):: {

foundmailagenttable_:= makeVoidTable(1);

if((localmailagenttable_.getNumberElements()) > 0,

{

inertable: localmailagenttable_.getElement(1);

agentref: inertable[2];

agentref->searchMail(sububjectkeywords,contentkeywords,

datedata,sender,agentname,1)

}

)

}

The above procedure starts searching the mailagents. It gets the agent at
index 1, and asks it to see if it contains all the given search parameters.
The agent returns the answer to the usermailagent by calling searchresult.

searchResult(agentref,index,result,subject,from,

subjectkeywords,contentkeywords,datedata,sender):: {

if(result,

tmptable:[from,subject,index];

foundmailagenttable_.addElement(tmptable)

});

index:=index+1;

if(index <= (localmailagenttable_.getNumberElements()),

{

inertable: localmailagenttable_.getElement(index);

agentref: inertable[2];

agentref->searchMail(subjectkeywords,contentkeywords,

datedata,sender,agentname,index)

},

printResults()

)

}

searchResult will store the agent in a list of found agents when it complied
to all search results. The mailagent returns in ”result” wether or not it
complied to the search criteria. Then searchResult gets the next maila-
gent reference out of the localmailagenttable (if there is one) and asks the
new mailagent to check itself to see if it matches with all the search cri-
teria. This mailagent will again call searchResult,... This continues until
all mailagents have been visited.

Other procedures print the search results to a string for display in the GUI.

44

This agent also contains the code to display a table of all currently avail-
able mails together with their unique index number. It then allows the
user to get and display a mail using this index number. When the user
chooses to download and view the entire mail, the usermailagent will order
the mailagent at the given index in the reference table to move to the local
machine. When it has moved itself the usermailagent will pass all the mail
data to the GUIagent which then gives a nice display of the mail. If the
user chooses to view the mail in parts the mailagent remains where it is.
The usermailagent will get mail subject, sender and data and display this.
It will then get the content page by page.

• GUIagent: contains the code that displays a basic gui and which allows
user actions to be translated into messages that the usermailagent can
understand. The GUI code is very straight forward and does not need
any explanation since it does not implement any program functionality.
The GUI is constructed using the palmwidgets borg library that allows the
construction of PalmOS compatible user interfaces. This user interface is
very simple since only windows, checkboxes, push buttons and text fields
are supported in this user interface library.

Figure 6: The mailcase GUI: managing mails.

45

Figure 7: The mailcase GUI: viewing mails page by page or entirely

Figure 8: The mailcase GUI: searching emails

46

4.2.3 Program conclusions

We will now evaluate the programs performance, using the four different situa-
tions described in the previous section.

On fast machines with a fast network connection:
This is the situation where we run our case on PC’s connected with a fast

network. On a fast machine each action a user can perform in the mail case is
simple enough to be done without any noticeable delay.

On a fast network (take 2400 Kbit/sec or 300 Kbyte/sec), agent migration
using weak mobility is very fast. Only for very large mails a small delay may
be seen. On fast networks with a small response time delay the time it takes to
migrate an agent can be estimated by the formula:
migration time = agent size / network bandwidth
On fast networks this time is always below 1 second. This is because the largest
mail in our test has a content of approximately 20 K. Even if the mailagent
would take up 100 Kb this would mean that it would be able to migrate in
100 Kb / 300 Kb/sec = 0,3 seconds to another machine. On this fast or even
faster networks it would take mails with contents larger than 1 Mb before delays
can be monitored.

Reading a local mail is even faster. Getting the mailagent from internal
memory takes only a few milliseconds. The user however will not notice a dif-
ference between the 300 ms it takes to get the mailagent over the network or
the 3 ms it might take to get the mail from local memory.

Getting a mail in pieces does not offer any noticeable benefit at all in terms
of downloading delays. It is however a much more comfortable way to view
large mails on the small Palm Pilot screen.

On fast machines with a slow network connection:
This is the situation where we run our case on fast machines connected with

a slow network. Examples of such a situation can be a laptop or PocketPC con-
nected with a GSM to offer access to a network. In this case processing power
is more than sufficient to prevent noticeable delays whatever mailcase operation
is performed.

On a very slow network (only some Kb/sec like GSM) the situation is a lot
more different from the previous case. Migrating the mailagents takes more
time and here it becomes useful to view large mails in parts in terms of speed.
We can estimate agent migration time by using the formula:
time = (agent size / network bandwidth) + total response time delay
This formula takes network delays into account. Simply adding the network
delay would cause bad results since an agent migration is done by sending several
packets over the network.

47

Each packet has a network response time delay, depending on whether or
not some packets get lost, the total delay can differ greatly. The only thing we
can say about the delay is that it is proportional with the size of the mailagent.

When we try to migrate an average sized mailagent, say 20 Kb, this will
take significantly more time than in the previous case.
Even without incorporating the total response time delay, our formula gives us
that it will take 20 Kb/sec / 2 kb/sec = 10 seconds to move our agent. When
migrating a mailagent with a large content (> 100 Kb) this time is not longer
measured in seconds but in minutes.

This leads to the conclusion that viewing mails using a machine with a slow
network connection is best done by viewing the mails page by page. If we choose
to download mails in parts, for instance 10000 characters (= 10 Kb) per time,
the mail content will be downloaded in about 10 Kb/ 2Kb/sec = 5 seconds.
The user will have to wait 5 seconds between each mail page for the next piece
of the content to download.

This situation clearly shows us that a slow network connection like a GSM
connection is actually too slow to allow weak mobility migration of agents.

On a slow machine with a fast network connection
In this situation we can have Palm devices with a fast wireless Ethernet con-

nection or the brand new umts GSM/organizers. Like we have seen in the test
environment section, Palm devices have a max network bandwidth of 20 Kb/sec.
On slow machines like Palm devices, the borg GUI becomes an enormous bot-
tleneck. The mailcase itself runs fast enough on both fast and slow machines.
The GUI however is not suited for slow machines. The GUI update delays on
fast machines are only 2-3 seconds which is reasonably fast. On slow machines
this delay exceeds 10 seconds.

Transferring a mail using weak mobility does not take too long. A standard
mail of 50 Kb is moved in less than 3 seconds. It takes however at least 10
seconds to built the new GUI windows which takes 13 seconds total time to
view the mail.
When we view the mail page by page we gain only 1-2 seconds in transferring
the mail content. Making the initial window to view the mail takes again 10
seconds, but once this window is created getting the next content requires only
a minor GUI update (2 sec). Getting the next page of your mail then takes only
some seconds which is an acceptable delay.

Here the user is perfectly free to use whatever mail viewing method he wants.
They both have acceptable delays. Viewing the mail page by page is again better
for viewing large mails on the small palmtop screen.

48

On a slow machine with a slow network connection
This is the worst case situation: here not only the GUI causes delays but

also the downloading of the mail data takes a lot of time. Devices that are in
this situation are the new GSM/organisers, offering a Palm like processor with
a GSM network connection. Currently, these devices support network speeds
between 9600 to 28800 depending on the GSM network they are operating on.
Current modern devices with gprs will get 56000 which is still considered slow.

Here, transferring an average 50 Kb sized mailagent will take quickly more
than 25 seconds if we take an average 2 Kb/sec network speed. Larger mails of
some hundred Kb will take minutes to download. In this case it is recommended
to get the mail in pieces. Downloading a 10 Kb piece of the content takes ap-
proximately 5 seconds, together with the 2-3 seconds to update the GUI this is
an acceptable time.

Conclusion
For the mailcase, we can conclude that network speed is very important if

we want to use mobility. On fast networks the delay of migrating a mailagent
using weak mobility is barely noticeable by the user. On a slow network weak
mobility becomes a pain to use since transferring an average sized 50 Kb maila-
gent already causes delays of more than 20 seconds. Small mailagents can still
be transferred using weak mobility, but once migrating a mailagent takes more
than 20 seconds, it is better to start downloading the mail in parts. Certainly on
fast machines with a slow network connection the page by page mail download
is a far better option.

Slow machines do not change the situation much. We have learned that
due to processor power and space constraints the maximum network speed is
seriously compromised in palmtop devices. Weak mobility moves a mailagent in
an acceptable time on a slow machine and only very large mails are best viewed
using page by page download. On slow connection it is always the better op-
tion to use the page by page download. The difference between slow and fast
machines is that everything goes a little slower on the slow machine because of
slightly larger network delays and slower GUI updates to display the mail.

The GUI is the real performance bottleneck in this case. Certainly on mobile
devices this GUI causes very large delays. It takes over 3 seconds to create a new
window and still about 2 seconds to update it on a fast machine. We can only
guess how much slower the GUI will be on a slow Palm device. The delays will
be certainly more than a factor 5 larger which will cause unacceptable delays.

Generally we can conclude that weak mobility has proven its use. However
when using a very slow network connection even migrating a mailagent using
weak mobility requires too much time. In such situations a page by page mail
download becomes preferable. The biggest bottleneck on slow machines is the
GUI that will have to undergo some major performance tweaks before it will be
usable on a mobile device.

49

4.3 Meeting planner:

The meeting planner case is a distributed system that allows users to set up a
meeting in a certain room at a certain time with a minimum number of par-
ticipants, etc. Each user gets a GUIagent and an MP-agent which allow the
user to create, view, manage and delete meetings. The agents communicate
with each other in a way that is known as peer-to-peer communication. Each
user keeps its own data (GUI, MP agent and created meeting and their data in
meetingagents). This means that every set of agents have unique data for each
user and that all the agents of all users in the distributed system, will have to
communicate with each other to come to a conclusion (meeting ok or not).

This testcase will try to find out if the presence of a slow machine in a
distributed system can influence the performance of the program. In distributed
systems, all data and processing are distributed. The presence of a mobile device
in such a system may influence the speed of the meeting planner. If it does slow
down the program, we may be able to find a solution to the problem using
mobility.

4.3.1 General program idea

The meeting planner consists out of 3 agents:

1. MP-agent: which represents a user or place. This agent contains the code
to setup, cancel, view or edit meetings. It contains commando’s from the
user through the GUI-agent. It keeps a list of references to all other MP-
agents of other users and another list with all references to meeting-agents
the user has created.

2. GUI-agent: this agent is the graphical user interface which communicates
with the MP-agent with asynchronous messages. When the MP-agent
sends a message to the GUI-agent it will not wait for the GUI-agent to
reply before continuing. Such type of message passing is called asyn-
chronous. The GUI-agent has to be on the users machine, but does not
need to be on the same machine as the MP-agent.

3. Meeting-agent: this agent represents a meeting. A meeting agent is created
by the MP-agent. The MP-agent will kill this agent if a meeting has passed
or is cancelled. This agent is responsible for the actual planning of the
meeting, it will check all other users to see if they can participate. If the
user given minimum number of participants is not reached, the meeting-
agent will kill itself cancelling the meeting. If the minimum number of
participants is reached, the meeting-agent will inform all users that the
meeting is planned and that they are no longer free on that given date
and time.

50

The user uses the meeting planner by logging in using a name and password.
He then can choose to plan a new meeting. To do this, he fills all necessary data:
organizer, date, start time, end time, meeting subject, place (room), guests and
a minimum percentage of people who have to attend the meeting. This data is
entered through the GUI-agent which sends all entered data to the MP-Agent.
When all data have been correctly entered, a meeting-agent is created by the
MP-agent. The meeting-agent will communicate with all other meeting-agents
to check if the place where the meeting will take place is available at a given
date and time. Should this not be the case, the meeting-agent will warn the user
who then will have two choices: trying another place or aborting the meeting.
When the place has been reserved the meeting-agent will try to reserve sufficient
participants for the meeting. It does this by contacting all other users logged
on to the meeting planner system. If there are not enough participants or
when the place is not available at the time of the meeting, the meeting will be
cancelled and all users will be warned about the annulation. If their are enough
participants the meeting will be confirmed to all users.

Figure 9: The meeting planner: agent distribution

Figure 9 illustrates how the agents are distributed. Note that the MP-agent
and meeting-agents do not need to be on the same machine than the GUI-agent.
Only the GUI-agent needs to be local to allow communication between user and
program. Standard the MP-agent is loaded on the same machine than the GUI-
agent and the MP-agent will create meeting-planner agents on his machine. The
agents can easily be modified to use weak mobility. It is for instance possible to
move the MP-agent immediately to another machine once created where it will
create all meeting-agents as well. This may seem useless now, but will prove to
be very useful further on.

51

4.3.2 The program

The mailcase is programmed by Pieter Verheyden. The mailcase is made of 3
types of agents which communicate in a way that is known as peer to peer:

1. GUI agent: this agent is the most straightforward agent to program. It
creates a simple graphical user interface using the PalmWidget library for
borg. Since the GUI-agent does not offer any program functionality and
its code is very straight forward I will not illustrate it with sample code.

2. MP-agent: the MP-agent is the agent that offers all the program func-
tionality. It is the main agent that enables a GUI-agent for itself. The
MP-agent keeps all data necessary to set up a meeting. It has a list with
references to all its meeting-agents so the user of the MP-agent or other
users can communicate with them. It also has a list of all other currently
logged in users so the meeting-agents can contact them to get participants
and warn all users about a meeting success or failure. A new meeting is
planned using this code:

setupMeeting(datetable, guesttable, percentage, subject, place):: {

if(checkDate(datetable),

if(((guestmeetingtable_.checkForFreeTime(datetable))

& (mymeetingtable_.checkForFreeTime(datetable))

& (waitingmeetingagentstable_.checkForFreeTime(datetable))),

{

meetingagentname:makeMeetingAgentName(datetable);

maref:makeMeetingAgentObject(meetingagentname,

datetable, agentname, guesttable, percentage,

subject, place);

mymeetingtable_.addReservation(maref, datetable);

if(!is_void(guiagent_),

guiagent_->setupMeetingFinished()

)},

returnError("No free time found")

),

returnError("You entered an invalid date and/or time")

)}

The above procedure is called from the GUI-agent and contains all data
necessary to start a meeting: the date and time, the guests that have to be
present, the percentage of participants, a meeting subject and place. This
data was entered by the user in the GUI and send to the MP-agent. First
of all, the data is checked to see if it is correct (correct date, does the place
of meeting exist, ...). If the place is not yet occupied at that time by an-
other meeting (a meeting from another user or one from the current user)
a new meeting-agent is created. makeMeetingAgentName(datatable) cre-
ates a unique name for the meeting-agent using date, start and end time of
the meeting. The agent is then added to our local table of meetings which
keeps a reference to all meeting-agents created by the user controlling the
MP-agent.

52

Cancelling a meeting can be done when the place can not be reserved or
at any other time:

cancelMyMeeting(datetable):: {

meetingagent: (mymeetingtable_.getMeetingAgent(datetable));

if(is_false(meetingagent),

returnError("You did not setup a meeting on " +

dateToString(datetable)),

{

meetingagent->cancelMeeting(agentname);

mymeetingtable_.deleteMeetingAgent(meetingagent);

if(!is_void(guiagent_), guiagent_->cancelFinished())

}

)

}

This code will check if there is a meeting-agent at the given time. If there
is a meeting-agent, it will be killed and deleted from our meeting-table.
Note that only the user who created the meeting-agent can kill it and thus
cancel the meeting.

The MP-agent also has the needed code to reserve a place:

tryReservate(meetingagent, datetable):: {

if(waitingmeetingagentstable_.checkForFreeTime(datetable),

{

waitingmeetingagentstable_.addWaitingMeetingAgent

(meetingagent, datetable);

if(((mymeetingtable_.checkForFreeTime(datetable)) &

(guestmeetingtable_.checkForFreeTime(datetable))),

reservationSuccess(meetingagent, datetable),

reservationFail(meetingagent)

)

},

meetingagent->reservationFail(agentname)

)

}

This code checks if the current user and the place are available at the
time of the meeting. If not, the user will be prompted if he wants to pick
another place and/or time.

Besides all the above codes, the MP-agent contains extra code to change
the data of a meeting, and to do some extra GUI-interaction, like confirm-
ing participation to a meeting of another user, log in, password manage-
ment, etc...

53

3. Meeting-agent: a meeting-agent contains all code and data to manage ev-
erything in a meeting itself. A meeting-agent keeps its time, data, subject,
place, minimum number of participants and a list of participants. It is also
responsible for finding participants for the meeting.

checkMeetingStatus():: {

nbrparticipants:participanttable_.getNumberElements();

if(nbrparticipants>=MINNUMBER, true, false)

}

trySetupMeeting():: {

if(checkMeetingStatus(),

{

caller->setupMeetingSuccess(agentname, datetable);

place->guestMeetingSuccess(agentname, datetable);

for(i:1, i<=(participanttable_.getNumberElements()),

i:=i+1,

{

cparticipant:(participanttable_.getElement(i));

cparticipant->guestMeetingSuccess(agentname,

datetable)

}

)

},

{

nbrparticipants:participanttable_.getNumberElements();

caller->setupMeetingFail(agentname, datetable);

place->guestMeetingCancel(agentname, datetable);

agentdie()

}

)

}

The above code checks to see if there are enough participants for a meeting.
If the meeting planning is a success, all users are informed so they can add
the meeting in the datetable and know they are occupied on the date and
time of the meeting. If the meeting fails because there are not enough
participants all users are informed about this failing so they will delete
their reference to this meeting-agent. Also the user of the meeting-agent
is informed about the meeting planning failure. When this is done the
meeting-agent kills itself

54

meetingFail():: {

nbrparticipants:participanttable_.getNumberElements();

for(i:1, i<=nbrparticipants, i:=i+1,

{

cparticipant: participanttable_.getElement(i);

cparticipant->guestMeetingCancel(agentname, datetable)

}

);

place->guestMeetingCancel(agentname, datetable);

agentdie()

}

The above code will inform every user in the meeting planner system that
the meeting in this meeting-agent has failed. This allows the MP-agent of
those users to erase the reference to these agents.

The meeting agent contains some other procedures that allow the user to
cancel the meeting manually or that enable getting and setting data in
the meeting-agent like the place and date.

I extended the meeting planner with some minor changes.

Figure 10: The meeting planner: agent distribution when a mobile device is
used

Figure 10 clearly demonstrates what I changed about the meeting planner.
When a user logs in using a PC everything remains as it is explained above.
When the user logs in using a mobile device all agents except the GUI-agent
can be moved to another platform. The reason for this change will become clear
in the next section.

55

4.3.3 Conclusion: Use weak mobility

Since the meeting planner does not use any form of mobility when running we
will use different test situations here. The program is distributed which meas
that the network speed will have a general impact on the programs performance.
The messages the agents send to one another are usually very small so the net-
work bandwidth is not important. As the agents need to communicate a lot,
the network response time delay will have an impact on the performance. The
larger this delay, the slower messages are send and the slower the program will
perform. Since this network delay is difficult to simulate and is only of minor
importance we will not test different network speeds.

In the chapter about our test environment, we saw that the performance of
a distributed program is more dependant on the slowest machine in the network
than on average processing speed. This is why in this case we will test two
situations:

All meeting planner agents run on a fast machine
When the meeting planner runs on a PC platform all the agents of the system

have plenty of processor power, memory and network speed. In this case, the
program runs smooth and no noticeable delays are monitored. Our meeting
planner extension that can move agents to another platform is useless because
almost every PC is fast enough to finish all the different meeting planner oper-
ations in time.

All meeting planner agents but one run on a fast machine
This is the case where a user logs on using a slow machine like a mobile

device. The slow machine in this situation in a Palm device using a mobile
network connection. In this situation there are 2 possibilities:

1. All meeting planner agents remain on the slow machine: in this situation
the GUI-agent, MP-agent and meeting-agents the user might create re-
main local. In this situation the meeting planners performance suffers
slightly because of two reasons:

(a) Slow machines, like mobile devices use a mobile networking solution.
This mobile networking solution has less bandwidth and a larger
response time delay compared to networks between PC’s. Like men-
tioned above, the bandwidth is not really an important factor. A
larger delay however will cause messages between agents to travel
longer. This will cause a performance drop like table 5 illustrated in
the test platform section of this chapter. This is especially the case
when using a GSM network connection that has large delays.

(b) The slow machine cannot perform the requested calculations as fast
as the other machines in the distributed system. This causes the other
machines to wait for the slow machine to finish its calculations. This
way precious processing power is wasted which causes a performance
drop. This is illustrated by table 4 in the test environment section
of this chapter.

56

The meeting planner case has a small performance drop due to the combi-
nation of both a slightly slower network connection and lesser processing
power. The slow machine is still capable to finish all calculations in an
acceptable time, this is why the user will notice only a small performance
loss. The biggest processing power eating function is again the GUI. When
a GUI update is done (new window) the slow machine needs almost all
its processing power for this update. This causes that other operations on
the slow machine temporary stall whenever a GUI update is performed.
This causes longer calculation times and thus longer waiting times for the
other agents on other faster machines which need the results.

While the performance hit may be barely noticeable by the user, there
is definitely a waste of processing power because the fast machines need
to wait for the slow machine to finish its calculations. On more complex
distributed systems that require more intense calculations, this will cause
very big performance hits. This is why I added the extension to the
meeting planner that allows it to move all agents, except the GUI-agent,
to another (faster) machine.

2. Only the GUI-agent remains on the slow machine: this is illustrated by fig-
ure 10. In this case only the GUI-agent remains on the slow machine (mo-
bile device). The MP-agent will move itself to another fast PC platform
once it is created. All meeting-agents will be created on the same machine
as the MP-agent and thus will be on a remote machine as well. This causes
all agents that offer program functionality (and do the calculations) to be
on a fast remote machine.

In this situation the distributed system seems to function without any
delay at all. This is easily explained since we created a distributed sys-
tem where all agents reside on a fast machine like illustrated in table 3
in the test environment section of this chapter. The GUI agent is still on
a slow machine, but since it does not perform any calculations, there are
no agents on other machines that are waiting for results from the GUI.
The MP-agent just sends GUI-update messages which are handled by the
GUI independently of all other agents. Since the messages between the
MP and GUI-agent are asynchronous the MP-agent is not influenced by
delays in the GUI-agent.

The user of the slow machine will notice a slightly better performance
since the machine can now focus entirely on GUI actions.

In this case an enormous advantage of weak mobility becomes clear. A slow
device can have a great performance hit in a distributed system. By simply mov-
ing all agents but the one responsible for the user interface to another faster
machine, a slow machine like a mobile device can participate in a distributed
system without causing any performance loss.

57

This system requires only minor modifications to existing distributed agent
systems. All agents are loaded locally; once all agents are loaded, the agents
that can be moved (agent which are not responsible for user or other interac-
tions on the mobile device) are moved to another faster machine using weak
mobility. The only code that has to be added is the code that will move the
agents to another machine. The only disadvantage of this solution is that the
time to start the program will increase because moving the agent costs some
time. How much longer the start-up will take depends on how fast the network
is.

The solution presented in this case can be used in all agent based distributed
programs thus enabling a mobile device to join a distributed or peer-to-peer
”community” without any penalty in general program performance.

58

4.4 The GPS route planning system

Everybody has heard of GPS navigation, the miracle devices which ensure their
users will never get lost again. You simply insert where you want to be, add
some via points (if wanted) and off you go. The navigator calculates the fastest
route towards your destination and displays a nice map of your current location
where the road to follow has a nice bright color. While you are driving informa-
tion appears on crossroads and obstacles ahead and a gentle voice informs you
of actions to take.
No wonder GPS navigation systems have become so tremendously popular in
past years. Many people have GPS navigation now; some have a GPS naviga-
tor in their cars, others have a small handheld GPS device with very limited
navigating skills. Some have a PC or laptop with an optional GPS module.
Just recently some companies started manufacturing GPS and route planning
expansions for known palmtop brands like Visor, Palm and Pocket PC. While
these can offer at least the functionality of a mobile GPS navigator, they have
two major drawbacks:

1. Finding an optimal route in a map containing a lot of data is a very
complex and difficult task. Thus route planning systems require lots of
processing power.

2. The map containing the route data of your current location contains a lot
of data and therefore takes a lot of memory. If that isn’t bad enough, the
route planning algorithm itself requires a lot of memory too.

We have seen that palmtops lack these two items. This case will demonstrate
that mobile agents can provide enhanced route planning for palmtop devices.

4.4.1 General program idea

In all cases a GPS navigating system is made of the same parts:

• GPS (to known current location, speed, heading, ...)

• Processing unit (to do the necessary calculations)

• Software (to do the calculations and for user interface)

• A digital map (a map containing the information on all the routes at
present position, this is a large collection of vectors which represents the
different roads)

• A display to inform the user with either very basic data (raw position in
longitude and latitude) or more complex data (display of all routes on
current locations, actions to take, ...)

• Some optional parts like, for instance, audio to inform the user by voice
about his position and/or actions to take.

59

When looking at the list above, we can see that all the parts required by a
GPS navigation system are present in PC and palmtop devices. Only the GPS
module is missing. Some companies noticed this as well and in order to offer the
user cheap GPS navigation systems they created a PC compatible GPS module
that can be used with any popular PC navigating software. Such a module
attached to a notebook gives people an excellent alternative for GPS navigation
in cars compared to embedded car navigation systems.
However, notebooks are too big and heavy for more mobile GPS navigation (for
use on foot). Better candidates are our palmtops like Palm, Visor andPocketPC.

4.4.2 Overcoming some problems

Like mentioned in the introduction there are some complications with GPS
navigating on a mobile device. The implementation of such a system is not
straight forward because the processing power of a mobile device simply isn’t
good enough to do the complex calculations in an acceptable time. Also the
memory of mobile devices is much too small to store detailed maps of an area.
Last but not least the remaining work memory is too small to allow calculations
of a large route since such calculations require lots of memory.
While these are all very good arguments not to attempt to create a mobile route
planner many have tried to anyway. [18]
If the device is intended to be fully mobile, the best use for it will be on short
excursions on foot. Such routes can be complex, but are often not very long.
The user will most likely plan his route before he starts walking so only the map
data relevant on this route has to be uploaded. In this case the local memory
and processing power are sufficient. This allows the user to navigate without
the need for a network (which is most likely absent in mountains, forests,...)

For other uses, like on longer excursions or navigation in a car the local
processing power and memory may become insufficient. The maps, even if
only the needed parts are uploaded, become too large to be stored locally at
full detail. Also the calculations on these complex maps will take a lot of
workmemory. This is where our strong mobility comes in. When the calculations
get too complex and take too long to complete they can be offloaded to a more
powerful platform. Long complex routes are only used in a car where we most
likely do have a network (GSM). In that case the calculations can be offloaded
when they take too long and the user can consult more detailed maps via the
network.

60

4.4.3 General program construction

Our program will consist of the usual GPS navigator parts like described in
the introduction of this case. There will be a map, a user interface and route
calculating part. Our program will consist of 4 agents:

• GUIagent: this agent implements a simple GUI like in our mail case. This
agent is responsible for forwarding user actions (pressing a button, tapping
the screen, ...) to the routeplanneragent which will then process these
commands. It is also responsible for displaying the information it gets
from the routeplanneragent to the user.

• Routeplanneragent: this agent’s main job is to calculate the shortest route
between two points. It does this by using the map data in the mapagent.
This agent also accepts user requests from the GUI (start planning a route,
print route, ...) and sends information to the user via the GUI (optimal
route results, route planning status, ...)

• Monitoragent: this agent monitors the routeplanneragent. It closely mon-
itors the time the routeplanneragent is calculating and the memory it is
using. If it calculates too long or takes too much memory this agent will
order the route agent to move to another machine.

• Mapagent: this agent simulates the data map (local & remote). Its only
function is to hold the map data and to give it to the routeplanneragent
when asked for.

The routeplanner can be in 2 main different conditions where we can split
one condition in three subconditions:

• The route planner is running completely local and all agents remain local
during the planning of a route.

• The routeplanneragent has moved to other machines and the agents have
to communicate over the network.

– The mapagent remained local and the routeplanningagent still uses
it to plan its route. This will cause heavy network traffic since there
is intense communication between the two agents.

– The mapagent moved to the same machine as the routeplanneragent
or the routeplanneragent gets its data now from another mapagent on
the same machine. This is an ideal situation where the route planner
process can run at full speed without heavy network load.

– The mapagent is moved as well but is on another machine than
the routeplanneragent or the routeplanneragent gets its data from
another mapagent on another machine. In this case, the network
load between the machines containing the active mapagent and the
routeplanningagent will be high. Program performance will depend
greatly on the network speed between those two machines.

61

We will now discuss the exact working of the program in a specific state to
explain betterits mobility behavior.

The program runs completely locally

Figure 11: GPS navigating program when running completely local.

In this case all map data is stored in the local map. If the data requested
by the user is not in it the program can optionally consult a remote map. All
agents run locally so the operations can not be very complex.

The first case of the program will most likely occur when planning short trips.
To explain the working of the program better we look at a simple example run
of our program:

• The user uploads the map he needs to the mobile device

• The user plans a route by giving a start and an end point

• The GUIagent forwards user actions to the routeplanner agent

• The routeplanneragent calculates the route using the data from the ma-
pagent

• The calculations are finished in time and the monitor agent does nothing.

• The routeplanneragent prints the route and forwards it to the GUIagent
which displays the route to the user.

• The GUIagent displays the info sent by the user agent.

The above example run shows how the agents behave when they all remain
locally. The routeplanneragent uses data from the local map in the mapagent
and the monitoring agent does not do anything since calculations are simple
enough to finish in time.

62

The program runs on different machines

This will happen when the monitor agent sees that the routeplanneragent
takes too long to calculate the route or starts eating too much memory. It
will then order the routeplanneragent to move itself to another machine. On
this remote machine a new monitor agent can be created. This will allow the
monitor agent to move the route agent again if:

• The remote platform is too slow to finish the calculations in time

• The remote platform is too busy with other agents/applications

• The network connection between the remote and local platform is too slow

Figure 12: GPS navigating program when routeplanneragent exceeds either
the max memory use or max calculation time threshold. The agents reside on
different machines.

As figure 12 indicates, the communication between the agents is now more
complex. The fact that the program runs partially local and partially remote
will not be noted by the user. To understand the working of the program we
look at a simple example run of our program:

• The user uploads the map he needs to the mobile device or uses the basic
map. If local memory is too low the route agent will use a remote, more
detailed, map. These maps are represented as a mapagent.

• The user plans a route by giving a start and an end point in the GUIagent.
The GUIagent start the routeplanneragent with this start and end point.

• The routeplanneragent calculates the route using the local and/or remote
mapagent.

• The calculation takes too long or the memory use is too high and the
monitor agent decides to order the routeplanneragent to move itself to
another machine.

63

• The routeplanneragent moves itself and its current data stack to another
machine (preferably one with a fast network connection with the machine
containing the active mapagent).

• The routeplanneragent continues its calculations on the remote machine
and returns a route to the GUIagent when it finishes.

• The GUIagent prints this route to the user

The only step that differs from the above situation is the step where the
monitoragent checks the routeplanneragent. In the first case, the routeplan-
neragent’s memory use and calculation time remains under the move threshold
of the monitoragent and nothing happens. In the latter case described above,
the routeplanneragent passes one of the thresholds and is ordered to move itself.

This illustrates that the moving of an agent is transparent to the other agents
which are unaware of the new location of the routeplanneragent and keep com-
municating with it like it never moved at all. This demonstrates the power of
the mobile agents platform independency.

4.4.4 The program

Implementing the route planner case was a lot more difficult than the maila-
gent case. I will explain all different agents and illustrate some of their more
important functions with borg code.

• Mapagent: this agent contains a small test database. This database con-
sists of two parts:

1. Nodes database: nodes represent crossings, villages or other special
locations on the map. Each node in the database has unique ID and
one or more names.

2. Edges database: edges represent pieces of roads in between crossings
and where road conditions (orientation, speed, ...) remain the same.
An edge always goes from one node to another and thus contains a
start and an end node. It also has information about its maximum
speed, length and cost. Cost is used to represent roads that are not
free like in France where you have to pay a sum according to the
distance you travelled on the highway. Note that a road can consist
out of multiple edges. An edge also has the name of the road it is a
part of.

These databases are stored in borg/pico tables:

nodetable_: [

‘[node id, node name]

["node01","Gent"],

["node02","Erpe mere"],

["node03","Aalst"]

["node04","Dendermonde"]

]

64

edgetable_: [

‘[startnode, endnode, length, max speed, cost, route name]

["node01","node02",10,120,0, "E40"],

["node02","node03",10,120,0, "E40"],

["node03","node04",9,70,0, "Dendermondse steenweg"]

]

Several procedures in the mapagent allow other agents to get data from
this database. The functions used by the routeplanneragent to plan a
route are:

getNode gets the node data from the database where the nodename is
”city” and returns this data to agent ”agentref”

getNode(city,agentref):: {

found:false;

tmptable:0;

index:1;

size: size(nodetable_);

while(((!found) & (index < size)),

{

tmptable:= nodetable_[index];

if(strstr(tmptable[2],city) > 0, found:= true);

index:= index + 1

}

);

agentref->acceptCity(tmptable)

}

getEdge returns all data of the edge between ”node1” and ”node2”. This
procedure is used to print a route and to check if two nodes are neighbours
(they are if this procedure returns an edge)

getEdge(node1,node2,agentref):: {

found:false;

tmptable:0;

index:1;

size: size(edgetable_);

while(((!found) & (index < size)),

{

tmptable:= edgetable_[index];

if(strstr(tmptable[1],node1) > 0,

if(strstr(tmptable[2],node2) > 0,

found:= true

)

);

if(strstr(tmptable[1],node2) > 0,

if(strstr(tmptable[2],node1) > 0,

found:= true

)

);

65

index:= index + 1

}

);

agentref->acceptEdge(tmptable,node1,node2)

}

getEdges is the most important function to plan a route. It returns all
edges containing a node ”nodeid”. The routeplanner will pick one of
these edges to continue its route construction and store the others for
backtracking.

getEdges(nodeid,node2,agentref):: {

foundtable: makeVoidTable(1);

tmptable:0;

index:1;

size: size(edgetable_);

while((index < size),

{

tmptable:= edgetable_[index];

if(strstr(tmptable[1],nodeid) > 0,

foundtable.addElement(tmptable)

);

if(strstr(tmptable[2],nodeid) > 0,

foundtable.addElement(tmptable)

);

index:= index + 1

}

);

agentref->noNeighbour2(foundtable,nodeid,node2)

}

• Routeplanneragent: this agent does the actual route planning and commu-
nicates with the user through the GUIagent. the routing planning code is
quite complex and too large for proper illustration. So I will just explain
the principle of the route planning. The route planner has to keep several
data in order to successfully plan a route:

– A best route: contains the list of edges forming the route with the
lowest cost until now. The route cost is the total length of the route
and is used to see if another found route is better (it is when it has
a lower cost).

– A route: this is a table that contains the edges of a route in construc-
tion.

– Visited nodes: this is a table that contains nodes that have been
visited. This table is necessary to avoid picking edges that have
already been used.

– Backtrack stack this stack stores all information of the route planning
each step in process. This information can be used to backtrack and
to continue the route planning using an alternative choice at that
point.

66

The working of the route planner is best illustrated by explaining every
step in the process:

1. A user starts the route planner by giving 2 cities
2. The GUI forwards these city names to the routeplanneragent
3. The routeplanneragent will ask the mapagent to send it the nodeid

of these cities.
4. If the city names exist, the mapagent will return the nodeid’s to the

routeplanneragent
5. The routeplanner checks if the two nodes are neighbors, it does this

by asking the mapagent if an edge exists between the two nodes.
6. The mapagent returns either an edge in which case a route has been

found and the routeplanneragent will add it to his route table that
contains all visited edges (and thus our route). The route is stored
and backtracking is done to see if a more optimal route exists. (step
8)
No edge is returned in which case the route planning continues to
construct the route further. The routeplanneragent will ask a list of
edges from the mapagent containing the current node.

7. The routeplanneragent gets a list of edges. It will filter all edges in
this list and erase those which contain nodes that are already visited
(these are stored in a table) and will pick the first edge to continue its
route planning. The other edges are stored in a table and are pushed
on the backtrack stack together with all other information necessary
to resume route planning in case of backtracking.
The first edge we picked is saved in our route table and the current
node is stored in the visited table. A new route cost is calculated.
This cost is the total route length so the new cost is simply
cost:= cost + length(newedge).
-If this new cost is smaller than the cost of the previous found optimal
route (or the initial cost if the first route still has to be found) the
route planner continues by again checking if the new current node
and destination node are neighbors, ... (step 5)
-If this new cost is larger than the cost of the previous found route,
this route is no longer optimal. The route planning will stop and
backtrack.

8. The backtrack procedure is called which will pop the latest route
planner configuration from the stack. It checks the remaining list
alternative edges.
-If there are still alternatives (that haven’t been visited yet) the route
planner will pick the alternative edge, store this one in route, store
the current node in visited and check if the new current node and
destination node are neighbors. (step 5)
-If the list of edges is empty, this means all edges on this level have
been tried and the backtrack procedure will restart, popping the
previous state from the stack, checking the edges, ...

9. Eventually every possibility is tried. When no possibility remains the
route planner stops and the most optimal route found is printed.

67

• GUIagent: provides a simple GUI where the user can start the route
planning process by giving start and end city. The user also can give an
initial cost. This cost is to prevent that the route planner will search too
far. This cost value has to be larger than the length of the shortest route
between the two cities or the route planning will fail.

• Monitoragent: The Monitoragent has a simple timer function that is ac-
tivated when the route planner starts calculating and stopped when it
finishes. The monitor agent checks continuously the calculation time of
the routeplannignagent. When this time exceeds a given threshold, it will
move the agent to another platform. This seems simple, but there are some
problems using this kind of monitoring system. The routeplanningagent
is very busy calculating and while it calculates, it does not check for new
messages (like a move request). This problem is solved in two ways:

– The routeplanneragent continuously needs to contact the mapagent
and wait for its reply messages when planning a route. If in the
meanwhile a jump request message is sent to the routeplanneragent,
it will be stored in its message queue and will be before the mapagent
reply. Thus the routeplanneragent will comply with the jump request
before continuing with the calculations.

– The procedure calls in the routeplanneragent are not like in a regular
OO program. Instead of calling a local procedure by simply calling
its name and passing argument procedure(arglist)) the procedure is
called by passing a message to it. This can be done by sending a
message (with the procedure call) from the procedure that needs to
call another procedure to its own agent. This can be done with:

agentname→procedure(arglist)

If during the execution of a procedure a jump request is received,
this request will be stored in the message queue of the agent. When
the procedure stops and calls another procedure with a message, this
message will be stored after the jump request message. Thus the
agent will move itself to another machine first before continuing with
its calculations. This may seem a lot of trouble to implement the
use of strong mobility in an agent but is actually necessary for the
next case. There weak mobility and forced weak mobility will be
used. Since borg has not all the features to stop an agent and empty
its stack till the procedure call, we need to simulate those in the
routeplanneragent itself. This is why the agent needs to be capable
of receiving and processing messages at any time. In the jumpagent
section we shall see that all this work is not necessary once borg
supports all needed functions.

Not only the routeplanneragent but also the monitoragent itself has this
problem. The monitoragent is in a loop which continuously checks if the
time or memory threshold has not been passed yet. Thus it is also inca-
pable of receiving a stop-timer commando.

68

This is solved by not making the check loop with a standard loop state-
ment (for, while) but with a procedure that constantly calls itself with a
message containing a procedure call to itself. Once again if a stop-timer
request is received, it will be stored in the message queue. When the pro-
cedure calls itself this call will be after the stop-timer request and thus the
monitoragent will stop the timer. This stop-timer request simply sets a
variable from true to false which makes that the loop-procedure no longer
calls itself and stops:

monitorLoop():: {

if(timePassed()>=max_time,orderJump(jumptoref));

if(stacksize > max_memory,orderJump(jumptoref));

if(stillmonitor,

agentname->monitorloop(),

display("Monitoring stopped."+eoln)

)

}

stopMonitor():: {

stillmonitor:= false

}

getStackSize(size)::{

stacksize:= size;

}

startMonitor(agentref):: {

display("starting monitoring..." + eoln);

calcagentref:= agentref;

stillmonitor:=true;

starttime:=combineDateTime(date(),time());

monitorLoop()

}

orderJump(machine):: {

calcagentref->jumpTo(machine)

}

The monitoragent receives an updated size of the stack each time routeplan-
neragent adds an element to it to backtrack. It will order its calculating
agent (in this case the routeplanningagent) to move to another machine
when either the passed time is greater than the max time or when the
stack memory size(memory the calculating agent uses) becomes bigger
than the max memory treshold.

69

4.4.5 Program conclusions

This route planner case eats a lot of memory. The memory use is far from
optimized and the procedures can be made much more performant. This may
seem a bad thing but is actually done on purpose. This route planner has only a
small database an thus memory and processor use will be limited anyway. With
this case we try to simulate a full grown route planner that eats memory and
processing power.

Before we can continue testing this case in different situations, we need to
estimate the size of the route planner agent during its calculations. Since borg
does not allow memory managing, the stack size is estimated. The elements
stored on the stack are pico tables with 10 elements. This table contains start
and endnode (6 characters each). It contains the route already constructed at
that time which can contain 1 to 10 edges (maximum of 15 edges in databases
but not all can be visited in the same path). So lets assume an average of 5
and a max of 10 edges are in this route table. An edge contains two nodes,
3 numeric values and a name: [”node01”,”node02”,12,120,0,”E40”]. If we say
the name has an average length of 7 characters the average size of an edge is
6 + 6 + 2 + 2 + 2 + 7 = 25 bytes. This means 5 edges take 125 bytes The
stack also contains a list of visited nodes that can go from 0 to 12 in our case.
With an average of 6 and 6 characters per node such a visited table contains
36 bytes. The other fields are filled with current speed, length, cost and value
of the current route in construction. These are all 32 bit integers and take up
8 bytes. The ninth element contains a list of alternative edges to use when
backtracking. This list has between 0 and 4 edges maximum. With an average
of 2 edges, this field takes 50 bytes. The last field contains the current node
processed and the endnode taking 12 bytes. So in total each stack element takes
an average of 12 + 125 + 36 + 8 + 50 + 12 = 243 bytes. The stack gets on
average 11 deep which means its total size is 2673 bytes. When we monitor max
stack memory use, we get around 210 average use per cell which is pretty close
to our theoretical guess. These memory sizes may seem very small, but what if
we have 150 in stead of 15 edges in the database?
Each element now takes on average 12 + 25*100 + 100*6 + 8 + 2*25 + 12 =
3184 bytes per element. The stack gets almost 7 to 10 times deeper with sizes
easily passing 80. In this case the stack uses not a measly 3 Kb but a respectable
254 Kb. This indicates that memory use grows exponential in proportion with
the total number of edges in the database. If we assume the agent itself with all
other data takes at least another 20 Kb, we have an average routeplanneragent
size of 23 Kb (mapagent contains 15 edges) and 274 Kb (mapagent contains 150
edges).

A fully grown routeplanner like route 66 eats uses 23 Mb of memory. If we
assume it uses 3 Mb for GUI and other purposes this means that it requires 20
Mb to do its calculations. this may still be an acceptable amount knowing that
a route planner like route 66 contains several ten thousand edges. The program
code is also quite small taking some 5 Mb, but the maps are huge taking an
enormous 500 Mb.

70

Luckily route planners for mobile device like Palm use smaller more local
maps and thus much lesser memory. Let’s assume that a modern route planner
for Palm devices uses 1 Mb to store its map, 100 Kb program code (which is
very large for a palm device) and 2 Mb work memory to do its calculations.
With these numbers we can estimate how a real agent based route planner will
react in the different situations below.

On a fast machine with a fast network:
On a speedy machine with lots of memory like a PC the route planner case

runs smoothly. It has only a very small database and plans an optimal route in
a reasonable time of about 20 seconds. If we make the calculating agent move
to another machine (by setting a very low memory or time threshold in the
jump agent) the agent will move quickly. In our case, the calculation agent uses
max 274 Kb. A fast network easily allows transfer speeds of 300 Kb or beyond.
This means that our routeplanneragent can be moved in less than one second
using strong mobility. Moving the routeplanneragent offers no benefit in this
kind of situation. When we set the monitoragent thresholds sharp enough, the
routeplanneragent will be moved, which will cause a huge amount of network
traffic because the routeplanningagent continuously needs data from the ma-
pagent. Due to network delays, this will cause a tremendous performance loss
since the routeplanneragent will have to wait continuously for data from the
mapagent. When the mapagent is also moved, the performance of the program
will depend on the speed of the machine the agents moved to. If this remote
machine is faster than our local machine, there will be a performance gain, if
not, a performance loss.

When the machine, our route planner case is running on, is fast enough to
finish calculations in a reasonable time (lets say below 2 minutes), it is unnec-
essary to use strong mobility. Moving the routeplanneragent and mapagent will
only result in a minor performance gain in the best case (mapagent moves along
with routeplanneragent)and tremendous performance drops in the worst case
(mapagent remains local).

On a fast machine with a slow network:
Here using strong mobility has even worse results than in the situation above.

Lets assume that our slow network connection is a modern but slow 4 Kb/sec
gprs GSM connection. Our routeplanneragent will take a full 274 Kb/4Kb/sec
70 seconds to transfer. This and the even larger network delays when mapagent
and routeplanneragent need to communicate cause an enormous performance
drop. This is best illustrated by an example:
Lets assume that our fast computer finishes calculations in just 2 minutes when
all agents remain local. If we decide that we want to move the agent after
30 seconds, calculations will take 30 seconds + at least 70 seconds moving the
agent. When the routeplanneragent has a mapagent on its new machine and
starts calculating again at full power, it will still calculate at least one minute (if
the new machine is faster). This means that total calculation time is no longer
120 seconds but 30 + 70 + 60 = 160 seconds in the best case!!

71

This and previous situation leads to the conclusion that strong mobility is
useless on a fast machine. Its only purpose is to offload a processor intensive
task (the route planning) to another machine. If this is done, the mapagent has
to be moved along also or there has to be a mapagent on the same machine as
the routeplanningagent. If this is not the case program performance will suffer
greatly from network delays because of the intense network traffic between these
two agents.

On a slow machine with a fast network:
Slow machines like a Palm device use a processor that is much slower than

a desktop PC processor. Lets assume that when a route planning calculation
takes 20 seconds on a PC, it will take at least 300 seconds or 5 minutes on a
Palm device. In this case, strong mobility may definitely help.

Even when the network connection is fast (20 Kb/sec for a Palm device) the
strong mobility of the agent will take some time. Moving the routeplanneragent
will take 274 Kb /20 Kb/sec = 14 seconds to transfer. This is already much
longer than our less than one second result we got when a PC was connected
to a fast network, but it is still acceptable fast. If we set our monitor agent
with a ”max calculation time” threshold of 30 seconds the routeplanneragent
will migrate to another platform once this threshold is passed. Will this moving
have a performance gain in this situation? Lets take a look at another run of
our program. We calculate 30 seconds, the agent is transferred in 17 seconds.
If the mapagent moved along or another one is available on the machine, the
calculations can finish at max speed within 18 seconds (10% or 2 seconds of
the calculation work is already done on our Palm device) . Thus instead of 5
minutes we calculated a mere 30 + 17 + 20 = 67 seconds. This is an enormous
performance gain of about 450%. If the mapagent does not move along, the
calculations will take longer because of the intense network traffic between the
two agents, but will still finish a lot sooner than when the routeplanneragent
would have remained local.

We can conclude that in the situation of a slow machine with a fast network,
strong mobility is very useful. The agent is transferred reasonably fast and
calculations finish much sooner.

On a slow machine with a slow network:
In this situation everything changes. Our Palm device is now connected to

the network using a slow GSM connection (4 Kb/sec max). We take the same
example as in previous paragraph:
A route planning calculation that takes 20 seconds on a PC is performed on
a Palm device where the monitor agent is set to move it after 30 seconds. In
this case, moving the agent will take 274 Kb / 4 = 70 seconds. When there is
a mapagent on the remote machine of the routeplanneragent, calculations will
finish in 30 + 70 + 18 seconds = 118 seconds. This is still an acceptable result.
When we take our larger Palm routeplanner with a 2 Mb routeplanningagent,
it will take more than 8 minutes to transfer the agent.

72

If on top of that the mapagent remains local and no other mapagent is
present on the machine the routeplanneragent currently resides on, finishing
the calculations will take even longer leading to unacceptable waiting times.

We can conclude that it is possible to use strong mobility as long as the
routeplanneragent stays below 400 Kb. If it becomes any larger than this, the
time to migrate the agent will become too large. When the routeplanneragent is
too large when we decide it to move, it might be better to abort the calculations,
move the routeplanneragent using weak mobility and then restart the calcula-
tions. This is the so called forced weak mobility. Moving the routeplanner with
weak mobility can be done in a few seconds. Once the agent is moved, calcula-
tions can continue much faster, certainly when the mapagent moved along or a
copy is present on another machine. This idea will be worked out in the next
case.

Route planner conclusions
Strong mobility has a strong advantage, but only when moving from a slow

to a much faster machine and when network speeds allow the routeplanneragent
to be transferred in an acceptable time. When the network is very slow, the
moving takes too much time and the best solution would be to stop the calcula-
tions, move the agent using weak mobility and then restart the calculations on
the remote machine. This solution allows the calculations to finish much sooner
than when we use strong mobility.

It looks like strong and weak mobility alone have only an advantage in spe-
cific situations. Next case will check if it is possible to combine these advantages
so the mobile property of agent offers a performance gain in more situations.

73

4.5 The advanced route planner

This case is the same as the previous route planner with one big difference; the
intelligence of the monitoragent is much higher here. Instead of always using
strong mobility once the max calculation time or max memory use threshold is
passed, this agent will use a different approach.

Moving an agent using strong mobility to a faster system will indeed ensure
that the calculations will finish sooner IF the network allows quick transfer of
the agent and its stack. If the network is slow, this transfer alone may take sev-
eral seconds or minutes, undoing any time gained by finishing the calculations
faster on a fast machine. In such situations it can be better to finish the cal-
culations locally and then move the agent using weak mobility. Then the agent
can finish future calculations faster. An even better approach is to cancel the
calculations, move the routeplanneragent using weak mobility and then restart
the calculations on the faster remote machine. This may prove to be faster
than using strong mobility on a slow network or waiting for the calculations to
finish locally. This case will have an enhanced monitoragent which is capable
of monitoring the network speed. This agent will allow us to find out which
mobile behavior is best in a certain situation.

4.5.1 When to use strong or weak mobility?

The above case learned us that the network is a very important factor for this
decision. If the network speed is fast, the routeplanneragent can be moved
quickly and the calculations will continue much faster even if the mapagent re-
mained local. If the network speed is slow, the moving will take much longer.
At that point, it might be better to wait and finish the calculations locally if
the memory is sufficient. If the memory is insufficient and a move is necessary
on a slow connection, it may be better to abort the calculations, move the agent
using weak mobility and then restart the calculations on the remote platform.

The choice between strong and weak mobility will depend on the following
factors :

• Network speed

• Calculation time threshold

• Free memory on device

• Memory use of calculating agent

• The time it takes to move the agent (agent size divided by the network
speed)

74

4.5.2 The advanced monitoragent

Our monitoragent has to be extended to be able to do this extra monitoring.
Since borg has no methods for measuring the memory use of an agent or current
network speed, those will have to be simulated. The monitoragent will get a
higher intelligence checking several parameters before deciding how to move an
agent.

A movetime function will be implemented which calculates the time it will
take to move an agent. This is simply done by dividing the memory use of the
agent with the network speed. The result is the time it takes to move the agent
to another machine.
A emptystack procedure clears all agent work memory. This way we can move
the agent optimally using weak mobility.

More parameters will have to be applied to the monitoragent in order to
configure it correctly:

• maximum memory use of calculating agent

• minimum free memory on current platform

• maximum move agent time

• maximum calculating time

With the above functions and extra parameters, the intelligence of the mon-
itoragent can be extended:

• if ”max calculation time” is passed:

– is ”movetime” smaller than ”maximum move agent time”

∗ yes: Move calculating agent using strong mobility
∗ no : stop calculations and emptystack (clear all calculation data)

Move calculating agent using weak mobility

• if ”current used memory” is larger than ”maximum agent memory use” :

– is ”movetime” smaller than ”maximum move agent time”

∗ yes: Move calculating agent using strong mobility
∗ no : stop calculations and emptystack (clear all calculation data)

move calculating agent using weak mobility

• if ”current free memory” is smaller than ”minimum free memory:” :

– is ”movetime” smaller than ”maximum move agent time”

∗ yes: Move calculating agent using strong mobility
∗ no : stop calculations and emptystack (clear all calculation data)

move calculating agent using weak mobility

This intelligence for the monitoragent is, although not perfect, already much
better than the intelligence used in the previous case.

75

4.5.3 Program conclusions

On fast machines:
We will not test fast machines in this case since they behave exactly the same

as in the previous route planner case. There we saw that any form of mobility
is useless on a fast machine unless we want to transfer the processor intensive
tasks to offload the local machine.
We have to prove in this case that mobility can give a performance gain for
agent programs on mobile devices.

On slow machines with fast network connection:
For this and following situation I configured the monitoragent as follows:

• Max moving time for our routeplanneragent is 30 seconds. This means
that when our routeplanneragent is 274 kb, network speed has to be at
least 274 Kb / 30 seconds = ∼9 Kb/sec. For our full grown route planner
with an agent of 2 Mb, we state that the moving time may be at most 120
seconds. This means network speed has to be at least 17 Kb/sec.

• Max calculation time is 60 seconds.

• The memory settings have the same result than the ”max calculation time”
setting. Exceeding max memory use will have the same results than when
the max calculation time is exceeded.
The only difference is that the max memory use threshold can make the
agent move sooner than the max calculation time threshold.

When our Palm device has a fast 20 Kb/sec network connection, we can
see that both route planners can be moved in time. Lets assume that a calcu-
lation of a route takes 20 seconds on a PC and 5 minutes on a Palm device.
Moving the routeplanneragent takes 274 Kb / 20 Kb/sec = 14 seconds using
strong mobility. This is below our ”max agent move” time, so strong mobility
will be used when a threshold is exceeded. After 60 seconds only 20% of the
calculations is complete when the ”maximum calculation time” threshold is ex-
ceeded. Moving the agent is done in 14 seconds and the remaining 80% of the
calculations is done in 16 seconds (if a mapagent is on the same machine as
the routeplanneragent). Thus the route planning will take a total of 90 seconds
which is far better than our 5 minute calculation time if the routeplanneragent
had remained local. In this situation we have an 330% performance increase.
This is 120 % less than in our previous case but still very acceptable. The lesser
performance is because the monitoragent will wait longer before it moves the
agent; 60 seconds compared to 30 seconds in the previous case. If the mapagent
remains local or the routeplanneragent consults another map agent on another
remote machine, performance gains will be smaller, but still well beyond 100%.
In such situations, the performance gain greatly depends on the network speed
between the machines holding the routeplanneragent and mapagent.

76

On slow machines with slow network connection:
In this situation our Palm is connected to the network using a slow 4 Kb/sec

(GSM like) connection. We again take a route planning calculation that finishes
in 20 seconds on a PC and takes 300 seconds on our Palm device. In this situ-
ation the ”agent move time” is 274 Kb/ 4 kb/sec = 70 seconds and 2048 Kb /
4kb/sec = 500 seconds. In both cases the max move time of 30 seconds is well
exceeded which means that weak mobility will be used to move the routeplan-
neragent whenever a threshold is exceeded. Our routeplanneragent calculates
for 60 seconds, then ”max calculation time” threshold is exceeded and the mon-
itoragent orders the routeplanneragent to move itself using weak mobility. If we
assume our routeplanneragent takes 50 Kb when idle and with empty stacks, it
will take 13 seconds to move the agent. Once the agent has been moved, the
calculations restart and are finished in about 20 seconds. This means the entire
route planning procedure takes 60 + 13 + 20 = 83 seconds. If we compare this
with a strong mobility approach in this situation, which would have taken 60
+ 70 + 16 = 146 seconds to complete the calculations, this is a tremendous
performance gain of more than 75%. This proves that it is better in some situ-
ations to stop the calculations and to move the agent using weak mobility

Here we can see that our advanced monitoragent definitely has advantages.
An advanced intelligence in the monitoragent that carefully decides what kind
of mobility to use in a specific situation can lead more frequent to performance
gains than when we stick to one kind of mobility.

Some readers may argue that moving the routeplanneragent sooner or im-
mediately after creation will have even better results. We want however the
agent to be local as long as calculation delays become not too long.
Take a simple route planning calculation that needs only 20 seconds to finish
on a Palm device and 2 seconds on a PC. When we set our ”max calculation
time” threshold to 10 seconds, the total calculation time will be :

• When using strong mobility: When the network connection is fast it will
take 10 + 14 + X > 24 seconds to finish the calculations, no matter how
fast the calculations finish on the remote machine.
When the network connection is slow, it will take even longer: 10 + 70 +
X > 80 no matter how fast the calculations finish on the remote machine.

• When using weak mobility: When the network connection is fast it will
take 10 + 3 + 2 = 15 seconds to finish the calculations. This is indeed
faster than our 20 seconds IF the routeplanneragent has a fast connection
to a mapagent. When the network connection is slow it will take 10 + 13
+ X > 23 seconds to finish the calculations no matter how fast the remote
machine is.

77

We want the agent to start calculating locally and to remain local as long
as calculations can be finished in a reasonable time. Setting low thresholds will
cause the routeplanneragent to be moved quickly. If a fast connection between
the routeplanneragent and a mapagent exists, future calculation will indeed fin-
ish faster. If this fast connection between the agents does not exist, program
performance for small route planning calculations may have been seriously com-
promised when using a small ”maximum calculation time” threshold.

General conclusions:
Here it becomes obvious that the mobility property of mobile agents can give

more often bigger performance gains. To accomplish this, the monitoragent
needs a high intelligence that carefully chooses which kind of mobility to use
depending on the situation. Even this monitoragent has some situations where
it causes performance drops. These performance drops only occur when simple
route planning calculations are done that require little more time than the ”max
calculation time” threshold to finish. In that case the time lost by moving the
routeplanneragent causes performance loss. This can be resolved by giving the
monitor agent an even higher intelligence. If it would be possible for the moni-
toragent to duplicate the calculation agent, this duplicate can be moved using
weak/strong mobility depending on the movetime threshold. The original agent
remains calculating locally until the duplicate has moved to another machine
and finished its calculations there. In this case, the agent which finishes first
wins. This would solve the last possible performance drops when using mobility.

78

4.6 The Jump agent

The first 2 cases (mailcase and meeting planner) only implement weak mobility.
This to prove that weak mobility can be useful on mobile devices and is easy to
implement. The third case (the route planner) is used to show the ease of using
strong mobility, when it is provided by the platform, with mobile agents and
that it can have advantages on mobile platforms. It contains a simple monitor-
agent that moves the routeplanneragent when either the max calculation time
or max memory use threshold is passed. This very basic intelligence only proves
useful in the case of a slow local machine with a reasonable fast network connec-
tion. This leads to the conclusion that using only strong mobility is not enough.
Much better results can be obtained when using a combination of strong and
forced weak mobility. The last case (the advanced route planner) uses this idea
and has a far better monitoragent with higher intelligence than its predecessor.
It uses strong and forced weak mobility depending on the threshold (hard or
soft) and the network speed. With this monitoragent we obtained far better
results in terms of program performance.

Finding out the optimal moving behavior for a calculating agent is not easy
and depends on many factors. In order to make mobility easy to use on mobile
platforms a more general form of this monitoragent has to be created, the
jumpagent. This jumpagent is a more general form of the monitoragent of
the advanced route planner with higher intelligence and configurability. This
way, programmers can use it in every borg agent program that uses a processor,
memory or network intensive calculating agent.

4.6.1 What to monitor:

This jump agent will have a more improved intelligence compared to the last
monitoragent. It will move its calculating agent in following situations:

• maximum memory use of the calculating agent threshold is passed

• minimum free memory on current platform threshold is passed

• maximum calculating time threshold is passed

• maximum CPU time use threshold is passed

• maximum network use threshold is passed

• is weak mobility available for our calculation agent?

The first 3 situations are the same as in the monitoragent of our advanced
route planner. The last two offer extra functionality that other cases may need:

• Maximum CPU time: this can help when more than one calculating agent
is active. When one of the agents starts using too much processing power,
it can slow down the entire program. In this case an extra function in the
jumpagent will monitor its calculating agent and will move it if it starts
taking too much CPU time. This threshold is user specific hard or soft
which allows better use of this rule.

79

This feature is not necessary in programs like our route planner, since
there is only one calculating agent, but may prove to be very useful in
other programs with more than one simultaneous running process. Such
programs can be games which can have a rendering, AI (artificial intelli-
gence), network and user interface part.

• Maximum network use: network bandwidth is limited, certainly on mobile
devices using mobile networks. The speed of such networks can vary from
1-2 Kb/sec (GSM) to 10-20 Kb/sec (wireless ethernet, bluetooth). Much
higher speeds can be reached, but can not be handled by the internal pro-
cessor of the mobile device. Since all network functions put a load on the
processor it is also imperative to limit network use to offload the processor.
The program speed can also be compromised when one agent claims most
of the network and so takes the bandwidth necessary for other agents to
communicate.
This can be avoided by adding an extra function in the jumpagent that
will move the calculating agent if it takes more than X % of the network
bandwidth. This threshold is user specific hard or soft.
This function of the jumpagent can be used in many programs. Even
the route planner would benefit from it. This jumpagent will automati-
cally solve the network speed problem when only the routeplanneragent
is moved and the mapagent remains locally. The network cannot take the
intense network traffic between the two agents and thus the program slows
down considerably. In this case a jumpagent set to monitor the mapagent
will move it to another machine when the calculating agent is moved and
network traffic rises above the given threshold.

• Weak mobility available: not every calculation agent can just be stopped
in the middle of a calculation. Certainly not if the calculation involves
several agents which are strongly dependant on one another. This setting
allows the user to specify if it is possible for the agent to just abort its
calculations, move it using weak mobility and restart its calculations once
moved.

The user will be able to give all above parameters plus some extras:

• Max agent move time: the maximum time it may take to move the calcu-
lating agent

• A critical minimum free memory barrier that has to protect the program
in case the minimum free memory rule is still transferring an agent and
memory runs dangerously low. In this case 2 things can happen:

1. The agent will be moved using forced weak mobility if available.
2. If forced weak mobility is unavailable, nothing will happen. Either

the agent is moved in time and memory is freed or the program will
stop.

• Weak or strong threshold: a strong threshold means the agent will have
to be moved, no matter what the conditions are. A weak threshold will
move the agent if conditions are optimal. Memory use thresholds are
always strong since they can cause a program crash when exceeded.

80

4.6.2 The jumpagent intelligence

The intelligence of our jump agent is even more complex than that of the latest
monitor agent:

The jumpagent has the ability to create a duplicate of its calculating agent.
This duplicate is either moved to another machine or killed (depending on the
situation). The duplicate and moveDuplicate(type) procedure have following
intelligence:

createStrongDuplicate(agent)

• Is there enough free memory to create a duplicate of agent ”agent”
memory use(agent) + current memory use <
total memory - minimum free memory

– yes: Create duplicate
– no: Do not create duplicate (fail)

createWeakDuplicate(agent)

• Is weak mobility available for agent ”agent”

– yes: Is there enough free memory to create a duplicate of agent
”agent”
memory use(agent) + current memory use < total memory
∗ yes: Create duplicate, stop its calculations and empty its stack.
∗ no: Do not create duplicate (fail)

– no: Do not create duplicate (fail)

moveDuplicate(type,machine)

• is type of mobility = strong: Does the agent already exist on remote
machine

– yes: We cannot transfer the data of the calculation to start the remote
agent. Kill remote agent and move duplicate agent.

– no: move duplicate agent

• s type of mobility = weak: Does the agent already exist on remote machine

– yes: Start the calculations on the remote agent. No move is necessary.
– no: Move the duplicate agent and start calculations.

The thresholds for max calculation time, max CPU, network and memory
use have all the same intelligence:

if threshold is passed and is a weak threshold:

• is ”movetime” smaller than ”maximum move agent time”

– yes: is createStrongDuplicate a success
∗ yes: move duplicate using moveDuplicate(strong,machine)
∗ no: move original agent using strong mobility

81

– no: is createWeakDuplicate a succes

∗ yes: is ”movetime” of the duplicate now smaller than ”maximum
move agent time”

–Yes: Move the duplicate using moveDuplicate(weak, machine)
mobility.
–no: Kill the duplicate

∗ no: do nothing.

If a duplicate agent is created, the agent which finishes first wins.

if threshold is passed and is a strong threshold:

• is ”movetime” smaller than ”maximum move agent time” or is weak mo-
bility unavailable

– yes: move agent using strong mobility

– no: move original agent using weak mobility.

If a duplicate agent is created, the agent which finishes first wins.

The minimum free memory threshold is always hard. If this threshold is
passed, it means that the calculating agent is large (eating a lot of memory)
and free memory is most likely low. This low free memory may compromise
possible other calculating agents so it is imperative that the agent is moved
as fast as possible to free up some memory. If the agent will take too long to
move and free memory is critical the program can crash. Since free memory is
low, creating a duplicate agent is impossible and not wanted in this case. If the
memory runs low the agent is moved in order to free up memory:

• if ”current free memory” is smaller than ”minimum free memory:” :
Exceeding the minimum free memory threshold can compromise other pro-
grams and is thus a hard threshold in which case the agent has to be moved

• is ”movetime” smaller than ”maximum move agent time”

– yes: Move calculating agent using strong mobility

– no: Move the calculating agent using weak mobility. If weak mobility
is not available use strong mobility anyway.

• if ” critical minimum free memory” threshold is passed:
If forced weak mobility is available, abort current move if not weak and
transfer agent using forced weak mobility.

82

4.6.3 How to use the jumpagent

A jumpagent like the one just described can make the job of implementing
mobile behavior for an agent easier but not easy. Agent based programs are dis-
tributed and thus need some proper thinking and design before implementation.
A good strategy is an OO based approach with some extras:

• What are the needed parts for your program. Here the programmer iden-
tifies different functionalities in his program and decides how to separate
them in different agents.

• Once the programmer knows what agents he/she will need, he/she has to
work out the communication between agents.

• The programmer now has a good idea of what the processing and net-
work requirements of each agent will be. At this point, he can think of
what settings for the jumpagent would be best for each agent in his pro-
gram. Agents that require a lot of memory need a carefully chosen max
memory use threshold. Those which require a lot of processing power and
are loaded on a slow machine need a carefully chosen ”max calculation
time” and ”max CPU use” threshold. Agents that need a lot of network
bandwidth are best of with a strong ”max network use” threshold.

• After completing all previous steps, the programmer can start the design
of the agents, programming their functionality, ...

• As a last step, the programmer can tweak the thresholds for maximum
program performance.

The third step allows the programmer to configure the jumpagent that way
it can ensure that its calculating agent is almost always in an optimal situation.
As mentioned, an agent that requires a lot of processing power is best with a
strong ”max CPU usage” threshold so it will be moved to another machine in
an early stage of its calculations when the current machine is either slow and/or
loaded. Agents which need to have a fast response time no matter what the
other conditions are, are best equipped with a strong ”max calculation time”
threshold. Agents which need a lot of network bandwidth preferably have a
strong ”max network use” threshold so the agent will be moved once the net-
work becomes too slow to ensure optimal operation of the calculating agent. The
most difficult agents to configure are the ones which require a lot of memory.
Since a program can stop when it runs out of memory, the memory thresholds
have to be carefully chosen.

This way, strong thresholds will ensure that the agents will always be in the
situation the programmer thinks is best for them. The weak threshold can be
used to further optimize your program. They are threshold like: ”breaking this
threshold may compromise the program’s performance so try to move the agent
but do not force anything”. This means that weak thresholds will only move
agents when the other situations are good and when the moving itself will not
cause more trouble than not moving.

83

Designing the agents, determine their needs and configure their jumpagent’s
thresholds accordingly is one thing, integrating the jumpagent into your program
is another. There are some rules the programmer has to keep in mind if he/she
wants the jumpagent to do its job properly:

• Each calculating agent must use its own properly configured jumpagent.
When the calculations start it will tell the jumpagent to start monitoring
and when the calculations stop it will tell to stop the monitoring.

It seems that a procedure to make the agent move is missing; such a pro-
cedure is in fact not necessary since a strong mobility move can be ordered
from the jumpagent itself with a simple command:

agentref->agentmove(machine)

This commando will move the agent whether it is calculating or not. If
the agent is not calculating the move will one using weak mobility; if the
agent is calculating a strong mobility move will automatically be used.
The commando’s ”stackTrash(agent)” and ”clone()” in borg, can be used
to empty the stack of an agent or to clone an agent (making a duplicate).

• In order to prevent program crashes due to memory exhaustion it is best
that the calculating agents support forced weak mobility. Forced weak
mobility will abort the calculations the calculating agent may be perform-
ing, empty its stack and move it using weak mobility. This way memory is
freed and the agent is quickly transferred so it can resume its calculations.
To do this all other agents involved in the calculations should check the
status of the other agents on a regular time. When they see one agent’s
calculations have been aborted, they will all abort and restart so that no
calculation anomalies will occur.

84

4.7 Thesis case conclusions

Out of all these cases we can draw a general conclusion. But first we go shortly
over the case conclusions again.

4.7.1 Case conclusions overview

The Mailcase: here we show that weak mobility is really easy to use. On
a fast network the agent is transferred quickly and can be viewed much faster
once locally. On slower networks however even the weak mobility may become
too slow for decent download times in which case it is better to download the
mail content data in pieces of user defined length.

The meeting planner: the meeting planner shows a small performance drop
once a slow mobile device is participating in the distributed system. It becomes
obvious that more processor intensive distributed systems will suffer even greater
performance losses once a slow machine is participating. Here we showed that
this performance drop can easily be solved by moving all calculating agents
to a faster platform. The only agents which remain on the slow machine are
agents which communicate with the device or user itself. This case shows us
that weak mobility enables slow machines like our Palm device to participate in
a distributed system without causing a system wide performance drop.

The route planner: the route planner gives us a glimpse of the performance
advantages we can get when we move the routeplanneragent using strong mo-
bility. The case clearly shows that strong mobility can give tremendous per-
formance advantages by moving the calculating agent from a slow machine to
a faster one. Unfortunately it also becomes obvious that strong mobility can
only be used when the network connection is fast. If the network speed is slow,
moving a calculating agent using strong mobility can cause a performance drop
instead of gain because the moving of the agent itself takes just too long. It also
shows that the network becomes a bottleneck in a distributed program where
two or more agents send a lot of messages: if the routeplanneragent and ma-
pagent are on different machines, a lot of network traffic is generated between
those machines because the routeplanneragent continuously needs data from the
mapagent. The performance drop caused in this situation is more dependant
on network delays than on network bandwidth. This is especially the case when
small messages are used; only when large messages are used the bandwidth
comes into play as well.

The advanced route planner: here the attempt to get rid of the disadvan-
tages of the route planner is done by implementing a system that uses both
strong and weak mobility. The case confirms that such an approach helps. The
approach chosen depends on the time it will take to move an agent over the net-
work. This means that the kind of mobility we use will depend on the size of the
calculating agent and more importantly on network speed. On slow networks
it is better to stop the calculations and move the agent using weak mobility.
This causes less transfer delays that may cause a performance drop. On fast
networks strong mobility is preferable since the agent can be moved fast, no
matter how large it is and local calculation results are not lost.

85

Although moving the agents from a slow to a fast machine often results in
a performance gain, there are still situations where we can note a performance
drop. This indicates that there is still some improvement left.

The Jump agent: this improvement is attempted in the jump agent. This
agent is an attempt to make mobility easier to use. The jump agent can be
used in many programs to ensure optimal performance in different situations.
The jump agent has a high level of intelligence and has many configuration
options so a programmer can optimize it for a specific calculating agent. The
intelligence of the jump agent is much higher and it has some tricks to further
prevent performance loss in some situations (like duplicating agents). Most of
the functions the jump agent uses are not implemented in borg. (network, CPU
and memory monitoring, agent duplication, stack emptying, ...) The jump agent
still leaves much room for improvements, but it already demonstrates its power.
It also indicates that borg is still in a too early stage of development to take full
advantage of the mobile property of its agents.

4.7.2 Conclusion: weak and strong mobility help

The first case leads to the conclusion that mobility is easy to implement. The
second case showed that weak mobility can be used to allow slow machines like
Palm devices to participate in a distributed program without a performance
gain.

From the last two cases we can conclude that mobility is very useful to
move calculating agents from slow to fast machines in terms of gaining program
performance. It has however become clear that weak or strong mobility used
separately can give great performance gains but only in very specific situations.
The performance advantage can be improved and extended to more situations
once we start monitoring certain key aspects like network speed, agent memory
size, This monitoring combined with some intelligence allows the monitor
agent to pick the right mobile behavior (none, weak, forced weak, strong) so
that we experience a performance gain in more situations.

This intelligence is further improved in the jumpagent which allows pro-
grammers to use the mobile property of agents more easily. The jumpagent can
be configured to give optimal performance for its calculating agent. The intel-
ligence can be improved even further to allow for instance interactions between
different jumpagents and their calculating agents.

The monitoragents and jumpagent show that borg is lacking some features
that are necessary to take full advantage of the mobile property of agents. This
is why I will present some needed future extensions to borg in the next chapter.

86

5 Extensions and future work around this thesis

This thesis has examined the use of strong and weak mobility of mobile agents
on mobile platforms. As agent systems and mobile platforms are still developing,
there is no doubt that there will be future work about this subject. This section
of the thesis gives some pointers about some extensions that would put weak
and strong mobility better to use in borg. It also gives some possibilities of
future work around this thesis subject.

5.1 Extensions for borg

Borg has developed from a very experimental programming language in the
powerful mobile agent platform it is now. [6] [9] Borg has made significant
progress, but the work is far from being complete. Even now several extensions
are made to borg and several others are planned.
In this thesis, we encountered several situations where we thought: ”If we only
had that function in borg we could...”. So we decided to dedicate a small section
in my thesis that contains pointers for extension to the borg virtual machine.
Pointers that may enable future developers to make much greater use of the
strong and weak mobility property of borg agents.

When using weak and strong mobility it became clear in this thesis that nei-
ther of them used separately offers only limited advantages. Weak and strong
mobility can give much greater performance gains in programs when the moving
behavior of agents is intelligent. This means that depending on several condi-
tions the optimal agent move strategy will be chosen. Borg however has not
the means to monitor those conditions. Since future users will most likely need
them, it may not be bad if they were implemented in the future. These are the
extensions I recommend:

• Agent memory monitoring: this is a function that returns how much mem-
ory an agent is currently using. If borg is to be used more frequently on
mobile devices in the future this extension will become a necessity. On
mobile platforms memory will always be more limited than on PC’s due
to space constraints. Programs that require lots of memory may get into
trouble if memory runs out. Also the size an agent is occupying in memory
is a good indicator on how long it will take to move it using either weak
or strong mobility. This is why a memory monitoring tool for monitoring
the memory use of an agent would be most helpful in borg.

• Free memory monitoring: this will be more useful on mobile devices than
on PC’s. This monitoring can prevent program crashes due to memory
exhaustion. It can be used to force agents to stop calculating or to force
them to move. This way much needed memory is freed and a program
crash prevented.

87

• Network Monitoring: this might be more tricky to implement since this
will involve contacting several ”test machines” to determine network band-
width and response time. Network speed is always very important when
using mobility. Combined with the agent memory monitoring it can be
used to give a good estimate on how long it will take to move an agent.
This move time can then be used to make a decision on what type of
mobility to use to move the agent in terms of program performance.

• CPU usage monitoring: this type of monitoring will be more useful on
platforms which contain several calculating agents or on machines which
are performing other tasks besides serving as an agent platform. This will
allow agents to distribute processing power automatically. If one agent
requires too much CPU time on a machine that is under heavy demand
it can be moved to a machine that is currently idle. There it can have
all the CPU time it needs. This feature will be more of use on PC’s and
servers which run multiple agents and programs than on mobile devices.

• Agent compression: this may solve the biggest disadvantage of mobility,
and more specifically of strong mobility. Moving an agent requires the
program to halt in most cases until the agent has been moved and can
continue its calculations. For performance reasons it may not be bad to
compress an agent (and its execution stack if strong mobility is used) be-
fore sending it over the network. This way the move time of the agent can
be shortened considerably and program performance will increase. This
is certainly true for slow networks where the time lost by compressing the
agent is easily regained by sending the agent faster over the network. The
agent compression should be optional and configurable (how heavy com-
pression to use?). On fast machines with slow networks a high compression
can be used. On mobile devices a medium setting may be advisable.
If this is implemented the ”agent memory use” monitoring could be ex-
tended to give a good estimate of how big the agent will be once com-
pressed.

• Agent stack emptying: this is needed in the case where the jumpagent
decides that it is better to stop the calculations of the calculating agent
and to move it using forced weak mobility. In this case, all calculations
have to be stopped and the calculating agent’s stack has to be emptied.
This can be done using the borg stackTrash function, but this function has
a disadvantage. When we use stackTrash we reset the entire calculating
agent his stack. This means we have to manually restart the calculations
once the agent is moved. This causes the extra trouble of storing all
the data needed to restart a calculating agent. It would be better if we
had a stackTrash function that would empty the stack till just before the
function call. This means the stack contains nothing but the function call.
If we move the agent now it will automatically restart its calculations.

88

• Agent duplicating: this feature that enables agents to be duplicated while
they are running can help to counter possible performance losses when
using mobility. It can be used to duplicate the calculating agent. The
duplicate is sent to a remote machine using strong/weak mobility. The
original calculation agents remain calculating locally when possible and
the agent which finishes first wins. This prevents performance loss in
situations where the calculating agent takes only slightly longer to finish
its calculations locally than the ”max calculation time” threshold. In that
case the original agent will finish before the moved duplicate agent.

5.2 Future work

This thesis has examined the use of weak and strong mobility for benefits on
mobile platforms and has suggested some procedures and ideas to make optimal
use of this property through the use of a jumpagent. This jumpagent is far
from being perfect and far from being complete. Although programmers can
configure all its thresholds it is still very basic and lacks real intelligence. This
jump agent can easily be extended to have an even higher intelligence that will
make the benefit of mobility even bigger. Possible extensions to the jumpagents
can involve:

• Communication between the different jumpagents to allow an even higher
intelligence. Such communications would allow a ”clean” abortion of a
calculation that involves multiple agents. In this case a jumpagent sends
a message to all involved jumpagents that memory is running low and that
the calculation has to be aborted.

• Intelligence to decide where to move the calculating agents. In this thesis
we always moved agents from a machine to another predefined machine.
This would be difficult to use since all the machines have to be manually
entered. It would also undo the advantage of mobile agents to distribute
processing power. An intelligence that seeks other remote machines and
checks certain parameters on those machines (speed, load, memory, net-
work speed,...) could allow better processing power distribution and thus
better performance.

89

6 Thesis conclusions

As a final chapter we will sum up all conclusions made in this thesis.

In chapter 2, we examined what mobile computers are and what bene-
fits/disadvantages they have. We concluded that these mobile devices like Palm
Pilots are complete size and battery optimized. This is why they lack large
memories, fast processors and advanced network hardware. We also learned
that mobile devices are just at the beginning of their evolution. Next genera-
tion umts GSM’s, GSM/PDA’s and other will mark a new step in this evolution.
These devices will have splendid multimedia capabilities and will have a perma-
nent internet connection via the existing GSM networks.

Chapter 3 explained what mobile agents exactly are, what the borg platform
is and how you can program agents in borg. We studied the advantages and
disadvantages of mobile agents on both fast (PC) and slow (Palm) machines. It
became clear that moving agents while they are calculating is a powerful prop-
erty that has the advantage to offload processing power on a machine while the
program is running. There are two major disadvantages which are inherent to
a distributed system. A distributed agent program becomes largely dependant
upon network speed and is more vulnerable to system/network failures.
Do we really need mobility to have the advantage of offloading processing power?
To answer this question we compared mobile agents with two other widely known
tools to make distributed systems: Java and client/server. Although Java can
support weak mobility it became clear that offloading processing power while a
program is running is impossible. Client/server lead to the same conclusion. So
it seems that strong mobility has indeed a unique advantage.

In chapter 4 we created several cases in a test environment to prove that
mobility can really be used to offload processing power:

• The first case, the mailcase, clearly shows that weak mobility is easy to
implement and use.

• The second case, the meeting planner, showed that a mobile device can
not join a distributed system without causing performance loss. By using
weak mobility to transfer all calculating agents from the mobile device to
another machine this problem is solved.

• The route planner case introduced strong mobility and gave a first glimpse
of the possible performance advantages we can get when using mobility
to move processor intensive agents to another faster system. It became
clear that using one type of mobility has only performance gains in very
specific situations.

• To solve this, the last case, the advanced route planner, used a higher
intelligence to move the routeplanneragent. This intelligence checked the
time it would require to send an agent over the network and decided what
kind of mobility to use based on that.

90

Eventually, we try to make mobility easier to use by making a jumpagent.
This jumpagent monitors a calculating agent and has a high intelligence that
will cause even more frequent and better performance gains.

The last chapter concludes that borg is still too immature to take full ad-
vantage of the mobile property of its agents. In this chapter we suggested some
needed extensions to make borg an even more powerful tool.

6.1 General conclusion

The use of mobility in agent based programs on mobile devices has definitely
advantages. Moving agents using different types of mobility can give big per-
formance gains. In order to have frequent performance gains we need to choose
our type of mobility carefully. To make this decision we need an intelligence
that monitors CPU, memory and network usage and that decides what mobility
to use based on these factors. This intelligence is implemented in a jumpagent.
This agent allows the intelligence to be used for a wide variety of calculating
agents. This intelligence, although already quite complex, is far from complete
and there is still a lot of work to be done on this subject.

91

References

[1] Links relating to general Palm info like the first Palm device, Palm device
requirements, ...
http://www.palm.com

[2] Links to the general Psion site with all the info about Psion products
http://www.psion.com

[3] Links to articles who explain the PalmOS
http://www.palm.com/dev
http://www.palm.com/about/pr/background.html#Q2

[4] Links to PDA/GSM combi devices
http://www.nokia.com/phones/9210/index.html
This siemens PDA can have a mobile network or GSM module expansion
http://www.fujitsu-siemens.com/rl/products/handhelds/pocketloox.html
A pocket PC with build in GSM
http://www.my-siemens.com/sx45
Compaqs ipac, a very powerfull pocketPC that can be extended with
network or GSM capabilitys through two compact card expansion slots
http://athome.compaq.com/showroom/static/iPAQ/handheld jumppage.asp

[5] The AI arti lab at the VUB does some extensive research with agents
http://arti.vub.ac.be

[6] All information about borg can be found here
http://borg.rave.org/

[7] Links to the borg routing principle and working
http://borg.rave.org/research.html

[8] Link to the official VUB pico site
http://pico.vub.ac.be

[9] All code of borg is found here
http://borg.rave.org/cgi-bin/borgcvs/borg/
The borg core files are in cborcore, the user interface specific files are in
the Xborg directories.

[10] Link to the borg source code of Pieter Verheydens meeting planner
http://borg.rave.org/cgi-bin/borgcvs/borg/examples/MeetingPlanner/

[11] Other thesisses about borg can be found here
http://borg.rave.org/cgi-bin/borgcvs/borg/documentation/thesis/
http://borg.rave.org/research.html

[12] Thesis Cedric Vanrykel : Quality of service voor mobiele multi agent sys-
temen
Licentiaatsthesis, Programming Technology Lab, Vrije Universiteit Brussel,
2001-2002.

92

[13] Thesis Pieter Verheyden : Transparante foutentolerantie voor mobiele multi
agent systemen
Licentiaatsthesis, Programming Technology Lab, Vrije Universiteit Brussel,
2001-2002.

[14] Here you can find links to articles explaining the working of Java and how
you program in a Java environment
The Java architecture
http://www.artima.com/insidejvm/ed2/ch01IntroToJavasArchitecture3.html
General Java information
http://Java.sun.com

[15] Links to mobile Java programs and Java agent systems
http://www.cs.mu.oz.au/agentlab/javaresources.html
http://www.manning.com/Mahmoud/
http://www.it.iitb.ernet.in/ rahul/Links/Links.html

[16] Links to sites relating to Quality of Service
http://www.nortelnetworks.com
http://www.qosmagazine.net/What is Quality of Service 1.asp

[17] Links to sites explaining the different GSM technologies like gprs, umts,
I-mode, ...
http://www.mformobile.com/

[18] Route planner software for the Palm device
http://www.123-gps.com/magellan-gpsvisor.shtml

[19] Here is a reference to other work being done on the subject of mobile agents
on mobile platforms.
http://agent.cs.dartmouth.edu/research/Chen.html

93

