(W]

STWW-Programma

SEESCOA:
Software Engineering for Embedded Systems using a
Component-Oriented Approach

Working Definition of Components

Deliverable D1.4

JERSITE
Nal

ey | @ THIT
NIVERSITAIR
CENTRUM UNWERS}TEIT

IN HET CENTRUM VAN DE KENNIS

SEESCOA PROJECT WORKING DEFINITION OF COMPONENTS

LN I R 11 1 I 3
COMP ONENT S .. et e e e e e e e et e e e e et e e e e aaanaeeeenes 4
COMPONENT SYSTEM... .ottt e e e e e e e et e e e e ean e eeeenes 8
ADDITIONAL POSSIBILITIES. ...t e s 10
(@] o1 To g = (| =SSOSR 10
INSAE VBV ..ottt b bbb st b et bt e s b e eb e e e e b et e b £ R e R e E e d bt e e s e e bt e bt e e b nnenes 10
Verification and Validation INFOMMIBIIONcoiieiriiriirieeseee et st b e e ene e 10
SOUCE COUE/BINAIY FOMMN.....c.ecuiitiieiiriereet ettt bbbt b e bt bttt s bt b e b 10
IMPIEMENTALION [SSUES......c.e ittt b e et b e bt e bt b et eb e e bt ne et b et b e b 10
DYNAMIC DINGING ...t e e bbb bbbt e e bt e e bt e b e e bt s b e e b e e enes 11
ACHVEIPESSIVEoviieie ettt ettt e st e e e s e e et e e s aestesbeeaeetesbeeaeesesaeeaeesenseeseeseensense e e tensenaenteneeneenees 11
Single-Threading/Multi-ThreadiNg/PrOCESIES..........curiiiieririeere e bbb bbb e 11
RS = S 5 [T 11
S TS = S - (TSR 11
MiQratiON/REMOIE EXECULION.cueeeeueetirieeeeeee et s e e e e sre st e esresaessestesbestesaeesessesaesbesteseestessesaestenteseenreneeses 11
(@ o 1T 0T L@ =SS oo TSRS 12
Object Oriented/Imperative/L ogic/FUNCctional COMPONENLS.........ccovreerirerieireseisesieseee e e seese s seeneens 12
= 010 107="o OSSR 12
LU o 100 4 1= £SO 12
Interfacing towards the COMPONENTE SYSIEM........c.iiiiiiireeert et b bbb e sn s 12
INtrospection/RETICAION & ADSOIPLION.c.iitiiieiietieertert et e e s e 12
The comPONENt SySIEM @S 8 COMPONENT.......c..eeetereetereete sttt sttt sttt ettt se et se et bt b e b e bt se st sbe st sbe st ebeneesenens 12
S 0 14
D] ST O S35 [15
Componentsand embedded softwar @ deVElOPMENT............ociiiiiee e e 15
Opportunities for SOFWare eVEIOPIMENT.cc.e i 15
Opportunities for embedded SOftware deVEOPMENTL...........oiiiiiee e 16
L A O T 18

SEESCOA PROJECT WORKING DEFINITION OF COMPONENTS

Introduction

The very nature of real-time embedded applications makes certain characteristics of
their implementation (such as timing and implementation architecture) critical. Usually,
the software in these applications is responsible for the control of other equipment; so
designing a correct solution requires a good expertise to glue non-standardized
components together.

Most real-time embedded systems are, by nature, multitasking solutions to real-world
problems. They typically deal with the interface and control of multiple external devices.
The different parts of these systems usually run at different priorities and with different
run-time characteristics. The notion of multiple tasks or threads being active in the
system at the same time is common. Many of these real-time systems are deployed on
a set of microprocessors in a distributed architecture. Designing a solution for this type
of problem requires a new adapted view to components.

This document describes the definition of a component and component system, as it
will be used in the SEESCOA project.! The definition is split in three parts:

* The first part describes what a component is and gives a good idea how to think about
components.

*The second part describes the requirements and the responsibilities of a component
system. The component system is the context in which a component has to operate.
*The third part looks at some additional characteristics and issues concerning
components and the component system.

L Currently, some definitions are missing. For example, how synchronization should be
described and other 'formal' issues are left out because this is partly the scope of the research
proposal. Note also that it could be needed to adapt and change the SEESCOA component
definition based on the experience we will gain during the project.

3

SEESCOA PROJECT WORKING DEFINITION OF COMPONENTS

A component is a reusable documented entity that is used as a building block for
software systems. It is used to perform a particular function in a specific application
environment within a specific component system. Components are composed (glued
together) using their interfaces. These interfaces consist of provided interfaces and
required interfaces. A provided interface describes how the functionality has to be
accessed. A required interface describes what is needed to perform this functionality.

In this definition a distinction has to be made between a component blueprint and a
component instance. A component blueprint is a description of a reusable software
element; a component instance is an instantiation of this description. A component
blueprint does not have a state, a component instance does. It also doesn’'t make
sense to talk about the runtime properties of a component blueprint; only component
instances have runtime properties. This distinction is important for a clear definition.
The term component is more general; by using it we mean both aspects.

Component instances are not objects. And in consequence, component blueprints are
not classes. First of all, components cannot inherit from other components. Objects do
inherit form each other (they inherit the implementation). Component blueprints are
also extensively documented, classes are not. Note that in some cases classes are
documented with diagrams, semantics, call protocols, and so on, but this information is
not explicitly described in the object definition. This information is often added in an
informal way. When a component is implemented, it will probably use different objects
to perform its functionality (of course in the case an OO language is chosen). Therefore
some books talk about components as if they were big objects. This is true in some
extent, but limiting the component definition to this would be wrong. A component
instance should be thought of as having its own code & data space and also its own
thread of control. This is necessary to have the ability to use different synchronization
principles and make components reusable. A component worked out, thinking it has its
own control flow will be more general, than a component which enforces certain calling
strategies upon other components.? Or, a component written in the assumption its
memory will be accessed by other components is more specific than a component
which doesn't share its data via these kinds of techniques.

A component (the blueprint as well as the instance) is always used in a certain
application environment and in addition it also offers an application environment to its
users. So two views are distinguished:

Environment of a Component: Outside View
- Provided environment

2 For example, database applications written as if they are standalone programs will receive a
message and send an answer back to the caller some time later while the originating component can
do other things. Written in the other way, the database component will block the sender which is not
reusable without writing adapters and other middleware.

4

SEESCOA PROJECT WORKING DEFINITION OF COMPONENTS

This is the application environment that the component offers. It can be
described by means of a text, a figure, ... For the component composers, this is
important information because it determines if a component is usable in a given
situation. A component that offers a ‘sales environment’ (for example: a
component that calculates Value Added Taxes) will not be used in a situation
where one needs a component to decode a video stream. Thus, every
component offers a certain environment, which is usable or not for the
component composer.
- Required environment

A component can also require to be deployed in a certain application
environment. The VAT component (see above) could for example need a
“database environment’, if it needs to make some data persistent. A component
could also need specific hardware, so this hardware makes part of the needed
environment of the component.

Unique Identification

Every component blueprint has to be named uniquely. This simplifies its
reference (if, for example, the component blueprint is stored in a catalog). It
should also be possible to have multiple versions of a component blueprint.
Therefore the identification of a component blueprint consists of an
identification name and a version number.* When component instances are
instantiated from the same component blueprint, they also have to be
distinguishable by means of a unique name®. This name should be used to get
a reference to the component instance (for example, if one wants to send a
message to the component). This of course requires a naming and referencing
mechanism.

Naming and referencing of component instances are not the same. Often, the
name of a component instance is a human-readable string. Knowing the name
is not enough to send messages to the component. a reference has to be
obtained. This reference is then used by the component system to route
messages to the correct component. Examples of references: a pointer in C++,
a Java reference or a Java RMI reference. A Java reference is a ‘smart’
reference since it knows how many times an object is referred.

Boundary View

The boundary view describes which interfaces a component offers and
eventually which interfaces it needs from other components. The difference with
the outside view is the following: the boundary view specifies formally how to use
a component. The outside view specifies only informally when to use that
component. Or put differently: the outside view specifies the usability of a
component, where the boundary view specifies how to use it.

Three views are distinguished: ©

3 The component composer is the person or tool that uses components and connects them to
build applications.
4 When using the term ‘version’ here, the ‘implementation version’ of the component is meant, not
the version of the component’s interface (like COM).
5 Note that the unique identification of a component blueprint and a component instance are not
exactly the same.

SEESCOA PROJECT WORKING DEFINITION OF COMPONENTS

- Provided Interface
This interface represents the services a component supports. The
provided interface shows which operations can be performed on the
component and which events the component can generate.

- Required Interface
Via this interface the component describes which interfaces it needs to
perform its services. Note that a component does not require a specific
implementation of an interface: it only requires the interface. It is possible
that a component does have an empty requires interface; this means that
the component is self-contained.

- Management Interface
Via this interface the component user is able to tune and to manage a
component. This is useful for testing and debugging purposes. This
interface is also used for creating, starting, cloning, stopping and
destroying components.

An interface can be specified at four different levels. Only the first level is supported in
most component systems today. Other levels are often specified informally, without any
support of the component system.

1. Syntactical Level

On this level the supported services are specified in a syntactical manner.
For each operation of the interface it consists of the name of the operation, the
parameters, the return value and the exceptions that can occur.

2. Semantic Level

A more detailed step is specifying the behavior of a component. The user
knows what he has to do, but he also knows what he can expect. The
specification of behavior is often done informally, but it can also be done in a
formal way with pre-conditions and post-conditions. A formal description has the
advantage that behavior can be checked automatically.

3. Synchronization Level

This level specifies the protocol that has to be followed when interacting with the
component. This protocol can for example determine in which sequence
operation calls should be made, if certain operations have to be performed in an
atomic way, and so on. The specification should be done in a formal manner
either by drawing a dynamic diagram (such as MSC) or drawing the control flow
between components or other ways of specifying the synchronization behavior
between components.

4. Quality of Service Level

6 A component is of course free to offer more than one interface and it is free to require more
than one interface. For example a component can require a certain interface from a database
component while it requires another interface from a scheduling component.

6

SEESCOA PROJECT WORKING DEFINITION OF COMPONENTS

This last level specifies non-functional properties of the component. This is of
course strongly dependent on the context of the component. Non-functional
aspects are for example the memory usage, the time complexity, the worst-case
time complexity, ... Other aspects have to do with the loss of precision, the loss
of messages, and so on. QoS specification can also be formal or informal. One
could for example supply estimation information, measurements, ...

This level is particularly important for embedded systems, since it enables us to
specify the resource needs of a component. This specification will only be an
approximation, but it can help in the development of the application. Also, when
specified formally, the component system can check automatically at runtime if
the constraints are met.

SEESCOA PROJECT WORKING DEFINITION OF COMPONENTS

Component System

The component system is the infrastructure (framework, architecture or kind of
operating system), which makes component instances work together, which glues them
and creates a homogenous environment for them. The component system can be seen
as the middleware which connects different components and which makes them work
together. To put it differently: the component system provides the streets while the
components are the cars driving on it.

The component system

Makes components to work. The component system can create and
destroy component instances and is able to start and stop component
instances.

The component system can have support for introspection. When
working with components we need the ability to find, name and rename
components. These abilities should be provided by the component
system. Furthermore, sometimes it is necessary that a client can query a
component about its services. Mostly the client is bound to the
component’s interface at client construction time (e.g. when the client is
compiled). When introspection is possible, the client is not bound at
client construction time, but it can dynamically (at runtime) find the
services of a component. This can be compared to the reflection
mechanism in Java.

Abstracts the hardware and the operating system such that all
components can run in the same environment. For example, if we work in
an embedded system with segmented memory or in a system with five
flavors of memory access, the component system should tackle this and
offer a more or less flat interface to it. This abstraction should be as
lightweight and as performant as possible in embedded systems. The
component system should be mapped upon the operating system and
language as closely as possible. It is not said that all hardware
dependent issues should or could be put into the component system. All
general hardware aspects that have impact on all of the code (like the
memory access example) should be put into the component system.
Modular hardware access, such as devices, can be put into separate
components.

Handles message passing between components: If a component
wants to make another component to do something, or whenever the
state of another component has to be changed, a message is send to
the component in question. Components can send messages to other
components using a reference (which can be obtained by using the
unique name of the component). The component system takes care of
sending data (over a network for example), calling the right function on
components and eventually other ways of passing messages between
components. This includes changing the data format if necessary, as is
done in CORBA. Nevertheless, the component system is not necessarily
a distributed environment.

SEESCOA PROJECT WORKING DEFINITION OF COMPONENTS

- The component system handles the scheduling between components.
Because components are thought of as active entities it is necessary to
map this view to a real operating environment. This is done by the
component system, which ensures priorities of messages between
components, which takes care of (hard) real time constraints and
scheduling in general.

- The component system has some standard glue components to adapt
interfaces between different components. For example, a certain
component can return a callback with a specific name, whilst the receiver
expects the message with another name. This can be done by certain
glue components.

The component system can help in debugging by checking whether interfaces are
used in the right way. The component system understands the synchronization
interfaces provided by the components and can automatically check whether the right
calling sequence is used. Another possibility is logging all sent messages.

SEESCOA PROJECT WORKING DEFINITION OF COMPONENTS

Additional Possibilities

Optional Features

There are some additional properties which can be added to the component definition
but which are not required.

Inside View

Every component has an inside view. But that does not mean that this
inside view is shown to the outside world (= the component composer).
The inside view of a component comprises all documents that explain the
implementation or the design of the component. This ranges from
analysis documents to the implementation code of the component. The
inside view of a component can give more insight in the workings and the
use of this component. But showing the internal workings of a
component also has its disadvantages: one does not only use the
interfaces of the component but also extra knowledge, this can have an
impact on the replaceability of the component.

Verification and Validation Information
To trust the correct working of a component it is important to provide
testing and validation information. This information can determine if a
component can be used or not in a certain product. As information one
could for example provide test cases, together with the results that were
achieved when performing those test cases. Formal proofs of
correctness could also be used as a validation of the component.

Source Code/Binary Form
A component can be delivered with its source code. Using the
component thus also means compiling that component. When a
component has its source code associated with it, it can be more easily
adapted and understood. Components that are used within a company
should ideally be provided with their source code. Components bought
from third parties will not always be delivered with their source code.

A component can be deployed in a binary form. That means that the
component composer cannot see the internals of the component (its
source code). The reasons for this can be multiple: the source code is
not available, is not sold, ... Delivering a component in binary form also
means that the component can only be used on platforms that do
‘understand’ this binary form. In the embedded systems world this is
rather rare, knowing that there exists no single standard platform.

Implementation Issues

10

SEESCOA PROJECT WORKING DEFINITION OF COMPONENTS

This section highlights some possibilities in implementing or constructing
a component system. Furthermore, it also contains some implementation
characteristics of components. Some issues are raised with their
advantages and disadvantages.

Dynamic binding
In some component systems components can be removed, added or
replaced at runtime. This feature can help to maintain a running system
or to adapt a running system.

Active/Passive

It is possible to create passive components by only letting them respond
to messages. An active component is a component that initiates
communication with other components. A passive component can be
looked at as a component without thread; an active component does
have a thread. Whether all components are active or not is a question
that is highly dependent upon the component system used. The
component system determines the kind of scheduling and threading.

Single-Threading/Multi-Threading/Processes
A component can be single-threaded or multi-threaded. A single-
threaded component has one thread of control, while a multi-threaded
component has more than one thread of control. Even more, a
component can be a complete process on its own.

State/Stateless
A component with state is a component for which the actions taken are
dependent on the time the messages were send to it. A stateless
component always acts the same to the same message. Passive
components can be stateless but are not bound to be stateless, just as
stateless components are not necessarily passive.

Persistent state
Sometimes it is necessary to store the state of a component when the
component has to remain persistent. An example of such a component
is an Address Book component. when the system shuts down, the
component has to be made persistent otherwise the content of the
Address Book is lost. Although, it is not necessary to make all
components persistent, this feature is optional.

Migration/Remote execution
Sometimes it is hecessary to execute a component on a remote system.
If this is necessary the component system should take care of this and do
the communication where needed. If we want to go one step further we
may need the ability to migrate components from one component system
to another whilst the code is executing. This feature can be used to
balance the load in a system.

11

SEESCOA PROJECT WORKING DEFINITION OF COMPONENTS

Cloning/Classing
Whether components are instantiated from a component blueprint
(source and code on disk/memory) or components are instantiated from
another component (cloning) is a matter of choice. Both ways have their
pros and cons.

Object Oriented/Imperative/Logic/Functional Components

Language
It does not matter whether components are written in an object oriented,
imperative, functional, or logic fashion. This is a choice left to the
implementer. The one and only thing that is fixed is the interfacing with
the component system. This also means that the language a component
is written in doesn't matter. As long as the interfacing with the component
system is as expected nothing can go wrong. Of course, some languages
are more suitable to be used in a component system than others. For
example, Java is much more suitable than assembler with a macro
language on top of it.

Glue Components
The glue components provided by the component system should be
generic well-designed components with as little as possible overhead
towards the global system and which can eventually be removed when
compiling.

Interfacing towards the component system

The interfacing towards the component system should be as simple as
possible. Sending a message to the component system will call the
component system. Receiving a call from the component system is a bit
trickier. Sometimes we may need our own dispatching function to
dispatch an incoming call to the effective method, while in other
languages suitable language constructs exist to reach the specific
method. How messages are passed between components is another
question: we can for example use serialization and deserialization to
transfer object graphs, or we can simply use a string to send messages
between components. Which way is used depends upon the component
system.

Introspection/Reification & Absorption

Introspection is needed whenever we are faced with dynamic
components that want to change their name at runtime, dynamic
components that look for their communication partner in the system and
components which change their behavior at runtime. The possibility for
remote/runtime uploads depends heavily on this feature. However it may
not be necessary to create a full reflective system in which we can absorb
certain kinds of primitives and workings into the component system.

The component system as a component

It can be an advantage to do the interfacing to the component system as
if it were a component itself. This has the advantage that whenever we

12

SEESCOA PROJECT WORKING DEFINITION OF COMPONENTS

work in a distributed environment the component system can always be
reached with the same identifier. Another advantage is the possibility of
tuning the component system with a larger, more manageable
component system-component, which will be removed in the production
version of the system.

13

SEESCOA PROJECT WORKING DEFINITION OF COMPONENTS

All presented properties will now be summarized in a has/gives table. The ‘has' column
of the table specifies if the component has a specific characteristic or not. The ‘gives’

column specifies if this characteristic should be made visible to outside world.”

Characteristics Has Gives
Component Characteristics
1 Unique Identification Mandatory
2 Context
- Provided View Mandatory
- Required View Mandatory
3 Boundary View
- Provided Interface Mandatory
- Required Interface Mandatory
- Management Interface Mandatory
4 Boundary View Levels
- Syntactic Level Mandatory ~Mandatory
- Semantic Level Mandatory ~Mandatory
- Synchronization Level Mandatory ~Mandatory
- Quality of Service Level Optional Optional
5 Inside View Mandatory = Optional
6 Verification and Validation Information Mandatory = Optional
7 Binary Form Mandatory = Optional
8 Source Code Mandatory = Optional
Implementation Characteristics
1 Dynamic Binding Optional
2 Persistent State Optional
3 Migration/Remote Execution Optional
4 Supports Cloning Optional
6 Language
- Functional Optional
- Imperative Optional
- Logic Optional
- Object Oriented Optional
7 Persistent Optional
8 Single-Threaded Optional
9 Multi-Threaded Optional
10 Contains State Optional
11 IsActive Optional

7 The table also contains the required properties of components

14

SEESCOA PROJECT WORKING DEFINITION OF COMPONENTS

Discussion

Components and embedded software development

In this section we will look at the opportunities offered by the SEESCOA component
definition for embedded software development. The discussion is split in two parts: the
first part looks at the implications for software development in general. The second part
focuses on embedded software.

Opportunities for software development

A problem that often comes back, is the lack of component reuse over several projects
or development teams in a company. To make reuse possible, components have firstly
to be defined in a formal way to eliminate misinterpretations. Without a clear definition,
we cannot talk about reuse — because we don't even know what is reused. That's why
the definition is quite formal on some points. Some parts of the definition have still to
be filled in, for example the languages that will be chosen to specify semantics and
synchronization are still an open issue.

It is also important to notice that a clear definition does not imply the correct use of
components. To use and reuse components a method is needed. This method should
enable the discovery of reusable components. A general guiding rule is the high
cohesion — low coupling rule. High cohesion means that when one develops a
component he should only put functionality in it that is related. A component that does
everything is not reusable. Low coupling is also needed between the different
components. If low coupling is not maintained, the involved component cannot be
reused without also deploying the other components to which it is coupled. This also
breaks reuse. To summarize, not only a good definition is needed, but also a good
method.

So, what are the consequences of the component definition for the software
development?

First of all, in our definition, a component has to be named and versioned. The naming
and versioning enables the unique referencing of components. The importance of this
naming and versioning is quite present for companies, since several people will develop
components and others will need to use them. It is clear that this should be done in a
uniform way. The naming and versioning also enables the storage of a component in a
catalog; this catalog can then be browsed when looking for a specific component.

Our definition also stresses the importance of specifying the usability of a component
using an outside view. When this usability is described, a component composer will
know if a component is relevant to him or not. What is meant here is that a component
always plays a role in a system, and to fulfill its role, it probably needs other
components. A component composer needs to know this information, otherwise reuse
won't be possible.

15

SEESCOA PROJECT WORKING DEFINITION OF COMPONENTS

When a component is finally selected, it is important to eliminate all misinterpretations
that could occur when using that component. That's why much attention is put on the
boundary view of a component. Only showing component operations is not enough to
(re)Juse a component! The different introduced levels enable the specification of
additional information concerning the use and behavior of a component. When used in
conjunction with the component system, the provided information can help in the
debugging of the software. The component system could for instance check if the
semantics of an operation are obeyed or if the synchronization rules are adhered to.

Opportunities for embedded software development

Besides the advantages shown above, the definition also has additional advantages for
embedded systems.

First of all, components can be annotated with resource information. This can be done
at the QoS level of the boundary view. Since this resource information is strongly
dependent on the context, it will often only be an approximation. However, if this
information is specified formally, tools can be built to analyze the system and its
correctness. Even when it is not done formally, the annotated components will help the
component composer in the selection of a component.

Also, if the component system could check automatically if the constraints can be met it
will be a great help for the system developer. The component system could also
schedule the resources needed by the different components in a way that doesn’t break
the system. This automatic scheduling enables the construction of dynamic systems,
where resource needs can change at run-time. When the component system supports
dynamic resource scheduling, it also becomes possible to build systems that allow
graceful degradation. The component system can inform a component of a resource
shortage; this component could then take a decision to solve or mask this shortage. Of
course, if resources have to be available at all time, a static analysis will still be needed.

The component system can also be used to debug the developed software: it can
intercept the sent messages between the components. This enables logging of
messages or events together with timing information, which can help the debug
process. As stated previously, the component system can also check if the
components adhere to what is specified in their outside view.

Another advantage of using a component system is the shielding from the hardware.
This facilitates reuse of components, because they are not too dependent on hardware
anymore. Though, if a specific piece of hardware needs to be used, it could be
encapsulated in a component. When a component needs this hardware, it will
communicate with the associated component. In fact, only the interface is important. In
some cases, when the hardware changes, it is possible to retain the interface. In that
way the dependency of other components on the hardware is not broken. Even if the
interface has to change, glue components can be used to solve this problem.

16

SEESCOA PROJECT WORKING DEFINITION OF COMPONENTS

17

SEESCOA PROJECT WORKING DEFINITION OF COMPONENTS

References

*[Szyperski] Component Software, Addison-Wesley/ACM Press, 1997
*[Beugnard, Jezequel, Plouzeau, Watkins] Making Components Contract
Aware, Computer (IEEE), 1999

*[Della Torra Cicalese, Rotenstreich] Behavioral Specification of Distributed
Software Component Interfaces, Computer (IEEE), 1999

*[Francis D’Souza, Cameron Wills] Objects, Components, and Frameworks
with UML: The Catalysis Approach, Addison-Wesley

*[Van Belle, Verelstt The mobile multi-agent system Cborg,
http://progwww.vub.ac.be/poolresearch/Cborg/

*[Noble] Three features for Component Frameworks, WCOP ‘99

*[Terzis, Nixon] Component Trading: The basis for a Component-Oriented
Development Framework, WCOP ‘99

*[Dong, Alencar, Cowan] Correct composition of Design Components,
WCOP ‘99

*[Sametinger] Software Engineering with Reusable Components, Springer,
1997

*[Keller, Hoelzle] Binary Component adaptation, ECOOP ‘98

*[Mezini, Lieberherr] Adaptive Plug-and-Play Components for Evolutionary
Software Development, Object-Oriented Programming Systems, Languages
and Applications Conference, SIGPLAN Notices vol 33, nr 10, 1998
*[Cornwell] Reusable Component Engineering for Hard Real-Time Systems,
PhD thesis, University of York, UK, 1998

*[Rastofer] A Component Model for Distributed Embedded Real-Time
Systems, GCSE '99 Young Researchers Workshop

*[Nierstrasz, Tsichritzis] Object Oriented Software Composition, Prentice
Hall, 1995

*[Szyperski] Components and Objects Together, Software Development
Magazine, May 1999

18

