
Envision Software Package for the Concerted Study of Biological Data
Nils Peder Willassen, Ingebrigt Sylte, Rafi Ahmad and Chris Fenton, Molecular Biocomputing Unit, Institute of Medical Biology, University of Tromsø.
Arne O. Smalås and Ronny Helland, The Norwegian Structural Biology Center, University of Tromsø. David Liberales and Inge Jonassen, Computational Biology Unit, University of Bergen.
Werner Van Belle and Kjell Arild Høgda, Norut IT, Tromsø. Tor Johansen The High Performance Computing Group University of Tromsø

Introduction Goals
The study of biological data is diffi cult, because what may be mathematically or statistically sig-
nifi cant is not necessarily biologically signifi cant. Biological data must be interpreted in light
of experimental results and methods. Therefore, experimentalists are needed in the analysis of
biological data, analyses that often entail the comparison of homologous sequences or struc-
tures. However, fi nding the correct software, using the software intelligently, plus integrating,
comparing, disseminating, validating and storing results can be a monumental and confusing
task. Questions often asked by experimentalists include the following:

Which software application is appropriate? How do I compare results between applications?
Are the results correct? How do I compare and coordinate alignment data, phylogenetic data,
structural data, etc? How do I query the data? How can I visualize the results of biological que-
ries? How can I save my results? How can I share my results? Can this process be automated in
anyway?

Step 1. Create a local database
Launch the database manager from the applications menu to display the database manager. Add a new database, name it, and select a fi le location. The database is now ready to be used.

Step 2. Load an alignment
The fi rst fi le loaded into the database is a multiple alignment. The initial alignment contains the skeletal protein sequences to which all additional information will be mapped.
Secondly, alignments represent a middle layer intercepting events ‘ela_hum, 1’ and changing to an aligned position ‘ela_hum, 2’ to coordinate data.

Step 3. Map information (PDB structure, DSSP, VADAR, etc.)
Information such as structure, solvent access, hydrogen bonding, etc can be mapped to the skeletal sequences, and become a protein, amino acid or atom property in the database.
All information is stored in the database (including dynamically generated) allowing for complex queries.

Step 4. Launch and synchronize viewers
Currently there are fi ve viewers; Alignment, Structure, Phylogeny, Information, and Seqspace. Common events such as Select, Limit, Colormap and viewer specifi c events such as
Vertical (scroll), Movement(3D), etc., are sent to ‘Connect’ed viewers. Relevant events are parsed through the alignment middle layer. An example of coordinated events is shown below,
seven viewers have received Select, Color, and Limit events.

The query language
Querying stored data is often a diffi cult step requiring the experimentalist to learn a specialized language. The goal of the query language is to simplify
the syntax to the point where it is understandable to the experimentalist without limiting available information. The user need not know where or how
the information is stored. Additionally, expert users can extend the query language by introducing native functions.

To select all Amino acids for which secondary summary equals sheet. Open the ColorViewer (shown below) pull down the Property -> ‘ss_summary’,
Expression->’=’, Value=’E’ (dssp), and add any desired formatting. The result set can be used to format connnected viewers. The query can be entered
as text in the script language as simply ‘ss_summary == E’, result set used to color viewer (shown right).
A second more complex example query: ‘ss_summary == E & dist(AtomX, atom) < 10’ which selects all atoms within 10 angstroms of any atom in a
sheet. In this case the distance operator was defi ned by the user and added to the language. Although far from complete the query language represents
a signifi cant step in bringing the experimentalist closer to the data.

Conclusions and remarks
• The envision software project is well underway with a beta version available for testing
 February, 2005.
• The software has been successfully tested on Windows, Linux, and Macintosh.
• Envision software has been developed by biologists for biologists.
• The graphic user interface has been designed to replicate known biological software to
 facilitate easy learning.
• Envision software has been successfully tested on an elastase data set of 40 proteins with 20
 structures.
• Envision software has been successfully used as a teaching aid.
• Envision software is modular and should be easy to expand.

The envision software package aims to help in the comparison, coordination, visualization, storage,
and exploration of biological data. Explicit goals of the envision software package include:
• The ability to compare results of similar applications in the same window.
• Viewers that share and synchronize application events.
• A dynamic self contained database that requires no administration and contains all information
• Local and remote databases for sharing of information.
• An advanced query language that allows experimentalist to form complex, understandable
 queries without a rigid syntax.
• Viewer window geometry and content is saved in script format for export, demonstrations, auto-
 mation, and the ability to pick up exactly where you left off.
• Platform independent.
• Most importantly free of charge.

Current development
• Phylogeny viewer(s) and phylogenetic ancestral sequence work.
• Viewer to show protein specifi c properties.
• Support for RNA/DNA.
• Further work on the ColorViewer API including union, intersection, etc., of multiple sets of
 conditions.
• Optimization and testing of query language.
• A graphic script interface for the automated generation of scripts and optimization of the script
 language.
• Documentation and user groups.
• Simplifi ed linking of external programs.

