Using Genetic Programming to Generate
Protocol Adaptors for Interprocess
Communication

Werner Van Belle*, Tom Mens**, and Theo D’Hondt

Programming Technology Lab, Vrije Universiteit Brussel,
Pleinlaan 2; 1050 Brussel, Belgium
{werner.van.belle, tom.mens, tjdhondt}@vub.ac.be
http://prog.vub.ac.be

Abstract. As mobile devices become more powerful, interprocess com-
munication becomes increasingly more important. Unfortunately, this
larger freedom of mobility gives rise to unknown environments. In these
environments, processes that want to communicate with each other will
be unable to do so because of protocol conflicts. Although conflicting
protocols can be remedied by using adaptors, the number of possible
combinations of different protocols increases dramatically. Therefore we
propose a technique to generate protocol adaptors automatically. This
is realised by means of genetically engineered classifier systems that use
Petri nets as a specification for the underlying protocols. This paper
reports on an experiment that validates this approach.

1 Introduction

In the field of evolvable computing, software (and hardware) is developed that
adapts itself to new runtime environments as necessary. The runtime environ-
ments targetted in this paper are open distributed systems in which interprocess
communication forms an essential problem. In these environments an applica-
tion consists of processes that communicate with other processes to reach specific
goals.

With the advent of mobile devices these processes do not necessarily know
in which kind of runtime environments they will execute. Therefore they rely on
standardised solutions, such as JINI, to find other processes offering a certain
behaviour.

Once the other process is known, the real problems start. How can the re-
questing process communicate with the unknown offered process ? Given the
fact that those processes are developed by different organisations, the protocols
provided and required can vary greatly. As a result protocol conflicts arise.

* Corresponding author. He is developing peer-to-peer embedded systems for a project
funded by the Flemish Institute for Science and Technology (IWT).
** Tom Mens is a Postdoctoral Fellow of the Fund for Scientific Research - Flanders
(Belgium)

2 Van Belle et al.

On first sight, a solution to this problem would be to offer protocol adaptors
between every possible pair of processes. The problem with this approach is that
the number of adaptors grows quadratic to the number of process protocols and
as such it simply doesn’t scale. The solution is to automate the generation of
protocol adaptors between communicating processes.

As a potentially useful technique for this adaptor generation, we explored the
research domain of adaptive systems. We found that the combination of genetic
programming, classifier systems, and a formal specification in terms of Petri nets
allowed us to automate the detection of protocol conflicts, as well as the creation
of program code for adaptors that solve these conflicts. This paper reports on
an experiment we performed to validate this claim.

2 Prerequisites of Interprocess Communication

Processes communicate with each other only by sending messages over a com-
munication channel (similarily to CSP [1] and the m-calculus [2]). Communica-
tion channels are accessed by the process’ ports. Processes communicate asyn-
chronously and always copy their messages completely upon sending. The con-
nections between processes are full duplex: every process can send and receive
messages over a port. This brings us in a situation where a process provides a
certain protocol and requires a protocol from another process. A process can
have multiple communication channels: for every communication partner and
for every provided/required protocol.

We imposed other requirements on the interprocess communication to allow
us to generate adaptors:

1. Implicit addressing. No process can use an explicit address of another pro-
cess. Processes work in a connection-oriented way. The connections are set
up solely by one process: the connection broker. This connection broker will
also evolve adaptors and place them upon the connections when necessary.

2. Disciplined communication. No process can communicate with other pro-
cesses by other means than its ports. Otherwise, ‘hidden’ communication
(e.g., over a shared memory) cannot be modified by the adaptor. This also
means that all messages passed over a connection should be copied. Messages
cannot be shared by processes (even if they are on the same host), because
this would result in a massive amount of concurrency problems.

3. Explicit protocol descriptions. While humans prefer a protocol description
written in natural language, computers need an explicit formal description
of the protocol semantics. A simple syntactic description is no longer suitable.

3 Specifying Protocols

As a running example we choose a typical problem of communicating processes:
how processes synchronise with each other. Typically, a server provides a con-
currency protocol (often a transaction protocol) [3] that can be used by clients.

Generating Protocol Adaptors for Interprocess Communication 3

The clients have to adhere to this specification or they won’t function. Since
the clients also expects a certain concurrency behaviour from the server, it is
possible that the required interface and provided interface differ.

For example, a client/server can require/provide a full-fledged optimal trans-
action protocol or it can require/provide a simple locking protocol. When two
such protocols of a different kind interact, we can run into an incompatibility
problem.

In our example we use a simple locking protocol of the server with which a
client can typically lock a resource and then use it. The API for the server is
described as follows. (A similar protocol description can be given for the clients.)

incoming lock(resource)
outgoing lock_true(resource)
outgoing lock_false(resource)
// lock_true or lock_false are sent back whenever a lock
// request comes in: lock_true when the resource is locked,
// lock_false when the resource couldn’t be locked.
incoming unlock(resource)
outgoing unlock_done(resource)
// will unlock the resource. Send unlock_done back when done.
incoming act(resource)
outgoing act_done(resource)
// will do some action on the process.

The semantics of this protocol can be implemented in different ways. We will
use two kinds of locking semantics [3]:

Counting semaphores allow a client to lock a resource multiple times. Every time
the resource is locked the lock counter is increased. If the resource is unlocked
the lock counter is decreased. The resource is finally unlocked when the counter
reaches zero.

Binary semaphores provide a locking semantics that doesn’t offer a counter. It
simply remembers who has locked a resource and doesn’t allow a second lock.
When unlocked, the resource becomes available again.

Differences in how the API considers lock and unlock can give rise to protocol
conflicts. In figure 1 the client process expects a counting semaphore from the
server process, but the server process offers a binary semaphore. The client can
lock a resource twice and expects that the resource can be unlocked twice. In
practice the server just marked the resource as locked. If the client unlocks the
resource, the resource will be unlocked. Acting upon the server now is impossible,
while the client expects it to be possible.

This protocol conflict arises because the API does not specify enough se-
mantic information. Hence, we propose to use a more detailed and generally
applicable formalism, namely Petri nets, to offer an explicit description of the
protocol semantics. Petri nets [4] offer a model in which multiple processes tra-
verse states by means of state transitions.

In the context of our locking example, this allows us to write a suitable
adaptor by relying on: (1) which state the client process ezpects the server to

4 Van Belle et al.

Client State Server State
lockcount = 0 H unlocked
= lock
lock_true
lockcount = 1 ' locked

lock

[

lock_true
lockcount = 2 ' locked

unlock

!

unlock_done
lockcount = 1 H Unlocked

act

Fig. 1. Conflict between a counting semaphore protocol and a binary semaphore pro-
tocol.

be in; (2) in which state the server process is. Both kinds of information are
essential: If we don’t know that the client thinks that it still has a lock, and
we don’t know that the state of the server is unlocked (see figure 1), no learned
algorithm can make a correct decision.

As an example Petri net that offers the needed semantics, the left part of
figure 2 specifies a binary semaphore locking strategy. The current state is un-
locked. From this state the process requiring this protocol, can choose only one
action: lock. It then goes to the locking state until lock_true or lock_false comes
back. We can also use this Petri net to model the behaviour of a process that
provides this protocol. It is perfectly possible to offer an protocol that adheres
to this specification, in which case, the incoming lock is initiated from the client,
and lock_true or lock_false is sent back to the client when making the transition.

4 Evolving Protocols

Protocol adaptors overcome the semantic differences between two processes. We
propose to use a genetic algorithms [5] with classifier systems to generate adap-
tors. Classifier systems are known to work very well in cooperation with genetic
algorithms, they are Turing complete and they are symbolic. This is important
because our Petri net description is in essence a symbolic representation of the
different states in which a process can reside.

If this representation would be numerical, techniques such as neural networks
[6], reinforcement learning and Q-learning [7] could probably be used.

The standard questions before implementing any genetic programming tech-
nique are: What are the individuals and their genes? How do we represent the
individuals? How do we define and measure the fitness of an individual? How do
we initially create individuals? How do we mutate them and how do we create

Generating Protocol Adaptors for Interprocess Communication 5

(*) [lockcount] > 0
unlock()

(**) unlock_done()

@‘

(**) unlock_done()

lockcgdnt:=
lockgbunt-1

(1) [lockcount]
locked

locktesn
lockcount +

() unLock()
() act() (*) [lockcount > 0]
act()

Fig. 2. Two Petri-net descriptions of process protocols. Ellipses correspond to states.
Rectangles correspond to transitions. The current state (marked with ‘") is coloured
yellow. The red transitions (marked with ‘*’) represent incoming messages. The blue
ones (marked with “**’) represent outgoing messages.

a cross-over of two individuals? How do we compute a new generation from an
existing one? For a quick overview of the parameters of our genetic program we
refer to table 4.

In our implementation, the individuals will be protocol adaptors between
communicating processes. The question of how to represent these individuals is
more difficult. We could use well-known programming languages to represent
the behaviour of the adaptor. Unfortunately, the inevitable syntactic structure
imposed by these languages complicates the random generation of programs.
Moreover, these programming languages do not offer a uniform way to access
memory.

An alternative that is more suitable for our purposes is the Turing complete
formalism of classifier systems [5]. A classifier system is a kind of control system
that has an input interface, a finite message list, a classifier list and an output
interface. The input and output interface put and get messages to and from the
classifier list. The classifier list takes a message list as input and produces a new
message list as output. Every message in the message list is a fixed-length binary
string that is matched against a set of classifier rules. A classifier rule contains
a number of (possibly negated) conditions and an action. These conditions and
actions form the genes of each individual in our genetic algorithm. Conditions
and actions are both ternary strings (of 0, 1 and #). ‘#’ is a pass-through
character that, in a condition, means ‘either 0 or 1 matches’. If found in an
action, we simply replace it with the character from the original message. Table
1 shows a very simple example. When evaluating a classifier system, all rules
are checked (possibly in parallel) with all available input messages. The result
of every classifier evaluation is added to the end result. This result is the output
message list. For more details, we refer to [5].

6 Van Belle et al.

Input message list = { 001, 101, 110, 100 }
Condition |Action|Matches| Result
00# 101 111 yes 111

01# 144 | 000 no /
4 004 | ### | no /
1H## H#H##| 140 yes {100, 110

Output message list = { 111, 100, 110 }

Table 1. Illustration of how actions produce a result when the conditions match all
messages in the input message list. ~ is negation of the next condition. A disjunction
of two conditions is used for each classifier rule. The second rule does not match for
input message 001. The third rule does not match because the negated condition is not
satisfied for input message 001.

A classifier system needs to reason about the actions to be performed based
on the available input. In our implementation, the rules of a classifier system
consist of a ternary string representation of the client state and server state (as
specified by the Petri net), as well as a ternary string representing the requested
Petri net transition from either the client process or the server process. ! With
these semantics for the classifier rules, translating a request from the client to
the server requires only one rule. Another rule is needed to translate requests
from the server to the client (see table 2).2

The number of bits needed to represent the transitions depends on the num-
ber of possible state transitions in the two Petri nets of figure 2. The number
of bits needed to represent the states of each Petri net depends on the number
of states in the Petri net as well as the variables that are stored in the Petri
net (e.g., the lockcount variable requires 2 bits if we want to store 4 levels of
locking).

Although this is a simple example, more difficult actions can be represented.
Consider the situation where the client uses a counting-semaphores locking strat-
egy and the server uses a binary-semaphores locking strategy. In such a situation
we don’t want to send out the lock-request to the server if the lock count is larger
than zero. Table 3 shows how we can represent such a behaviour.

The genetic programming we implemented uses a full classifier list with vari-
able length. The classifier list is an encoding of the Petri nets, as representation
for the individuals. Every individual is initially empty. Every time an individual
encounters a situation where there is no matching gene a new gene (i.e., a new
classifier rule) will be added with a condition that covers this situation and a

! Currently we are investigating whether we can drop this translation and generate
an adaptor from the Petri net representation directly.

2 This method of using full classifier systems as individuals is known as the Pittsburgh
approach [8]. The Michigan approach, whereby a set of classifier rules evolve together
to reach a solution[9], is not suitable for our purposes because one rule doesn’t cover
the behaviour of an adaptor. As such, cross-over between single rules would not help
that much.

Generating Protocol Adaptors for Interprocess Communication 7

classifier condition || action rule description
requested| client [server|performed
transition| state |state action

O0HHHH | HHHH|#HHA#| 11#. .. # Every incoming action from the client (00)
is translated into an outgoing action on the server (11)
O1HHHH|HHHH|HHH| 10#. .. # Every incoming action from the server (01)

is translated into an outgoing action to the client (10)

Table 2. Blind translation between client and server processes. The last 5 characters
in column 1 represent the corresponding transition in the Petri net. The characters
in the second and third column represent the states of the client and server Petri
net, respectively. The fourth column specifies the action to be performed based on the
information in the first four columns.

classifier condition || action rule description

requested| client [server|performed
transition| state | state action

00 001 |“##00|##+#[10 010 ... |If the client wants to lock (001) and already has a lock (T##00)
we send back a lock_true (010)

00 001 | ##00 |###]11 001 ... If the client wants to lock (001) and has no lock (##00)
we immediately send the message through (001).

Table 3. Translating a client process lock request to a server process lock action when
necessary.

random action that is performed on the server and/or the client. This way of
working, together with the use of Petri nets guarantees that the genetic algo-
rithm will only search within the subspace of possible solutions. Without these
boundaries the genetic algorithm would take much longer to find a solution.

Fitness of an individual is measured by means of a number of test scenarios.
Every test scenario illustrates a typical behaviour the client requests from the
server. The fitness of an individual is determined by how many actions the
scenario can execute without yielding unexpected behaviour. Of course this is
not enough; we should not have solutions that completely shortcut the server. For
example, the algorithm could return lock_true every time a request comes in from
the client, without even contacting the server. To avoid this kind of behaviour
our algorithm provides a covert channel that is used by the test scenario to
contact the server to verify its actions.

The genetic programming uses a steady-state GA, with a ranking selection
criterion: to compute a new generation of individuals, we keep (reproduce) 10% of
the individuals with the best fitness. We throw away 10% of the worst individuals
(not fit enough) and add cross-overs from the 10% best group®. To create a cross-
over of individuals we iterate over both classifier lists and each time randomly
select a rule that will be stored in the resulting individual. It should be noted that
the individuals that take part in cross-over are never mutated. The remaining
80% of individuals are mutated, which means that the genes of each individual
are changed at random: for every rule, a new arbitrary action to be performed

3 These values were taken from [10] and gave good results during our experiments.

8 Van Belle et al.

on server or client is chosen. On top of this, in 50% of the classifier rules, one bit
of the client and server state representations is generalised by replacing it with
a #. This allows the genetic program to find solutions for problems that are not
presented yet.

parameter value
individuals (genotype) variable-length classifier system represented as bitstring
population size 100
maximum generations (100 runs) 11
parent selection ranking selection (10 % best)
mutation bitflip on non ranked individuals
mutation rate 0.8
crossover uniform
crossover rate 0.1
input/output interfacing Petri net state/transition representation
actions message sending
fitness number of successfully executed actions

Table 4. Parameters and characteristics of the genetic program

5 The Experiment

We will now present the experiment that shows the feasibility of the above tech-
niques to automatically learn an adaptor between incompatible locking strate-
gies.

The experiment is set up as a connection broker between two processes.
The first process contacts the second by means of the broker. Before the broker
sets up the connection it will generate an adaptor between the two parties to
mediate semantic differences. It does so by requesting a running test process from
both parties. The client will produce a test client and test scenarios. The server
will produce a test server. In comparison with the original process, these testing
processes have an extra testing port, over which we can reset them. Furthermore,
this testing port is also used as the covert channel for validating actions at the
server.

The genetic program, using a set of 100 individuals (i.e., adaptor processes),
will deploy the test processes to measure the fitness of a particular classifier
system. Only when a perfect solution is reached, i.e., a correct adaptor has been
found, the connection is set up. For reliability reasons we have repeated the
experiment (i.e., the execution of the genetic program) 100 times.

The scenarios offered by the client are the ones that determine what kind
of classifier system is generated. We have tried this with three scenarios, as
illustrated on the left of figure 3. Scenario 1 is a sequence: [lock(), act(),
unlock ()]. Scenario 2 is the case we explained in figure 1. Scenario 3 is similar

Generating Protocol Adaptors for Interprocess Communication 9

to scenario 1: [lock(), act(), act(), unlock()]. The reason why we added
such a look-alike scenario will become clear in our observations. In all three
scenarios, we issue the same list of messages three times to ensure that the
resource is unlocked after the last unlock operation.

Client Client Client
Scenario 1 Scenario 2 Scenario 3 Client Adaptor Server
= lock = lock = lock =
lock_true lock_true lock_true -
- act - lock - act H act_done
| act_done lock_true act_done genetic > = unlock
algorithm -
= unlock = unlock - act - unlock_done
unlock_done unlock_done act_done act_done H
| H
= act = unlock = unlock
act_done unlock_done unlock_done H

Fig. 3. The three test scenarios we used as initial input to the genetic programming.
The dashed vertical lines are waits for a specific message (e.g., lock_true). When using
only scenarios 1 and 2 as input, one of the generated adaptors behaved as specified on
the right hand side.

5.1 Observations

An examination of the results of several runs of our genetic programming algo-
rithm lead to the following observations:

When we used the covert channel to measure the fitness, we found that (for all
100 runs of the GA) a perfect solution was found within at most 11 generations.
When we didn’t use the covert channel to check the actions at the server side, the
genetic algorithm often (30%) created a classifier that doesn’t even communicate
with the server. In such a situation the classifier immediately responds lock_true
whenever the client requests a lock.

Occasionally a classifier system was generated with a strange behaviour. Its
fitness was 100%, but it worked asynchronously. In other words, the adaptor
would contact the server process before the client process even requested an
action from the server process. It could do so because the adaptor knew that the
client would request that particular action in the given context. This is illustrated
on the right of Figure 3. It implies that a learned algorithm can anticipate certain
kinds of future behaviour.

Initially, we only used scenario 1 and 2 to measure the fitness of each in-
dividual. We encountered the problem that sometimes, the adaptor anticipates

10 Van Belle et al.

too much and after the first act, keeps on acting. This problem was solved by
assigning a zero fitness to such solutions.

As a last experiment we measured the fitness by combining information from
all three scenarios. This allowed the genetic algorithm to find a perfect solution
with less generations because separate individuals that developed behaviour for
a specific test scenario were combined in a later generation using cross-over. This
illustrates the necessity for a cross-over operator. A random search would take
considerably more time to find a combination of both behaviours.

One of the classifier system that is generated by the genetic algorithm, when
providing as input all three test scenarios, is given in table 5. The produced
classifier system simply translates calls from client to server and vice versa, unless
it is about a lock call that should not be made since the server is already locked.
The bit patterns in the example differ slightly from the bit patterns explained
earlier. This is because we need the ability to make a distinction between a
‘transition-message’ and a ’state-message’. All transition messages start with 00
and all state-messages start with 10 for client-states and 11 for server-states.

requested client server |performed

transition state state action description

00 00 01 | 10 00 #1 |11 ###+#| 00 10 01 client?lock() & client=locked — client.lock_true()

00 00 01 | 10 00 1# |11 ###+#| 00 10 01 client?lock() & client=locked — client.lock_true()

00 00 01 | 10 00 00 ~ 11 010 | 00 11 01 client?lock() & client # locked — server.lock()

00 00 10 [10 00 1# |11 ###+| 00 10 11 |client?unlock() & clientlock>2 — client.unlock_done()

0000 10| 10 00 01 |11 ###4| 00 11 10 | client?unlock() & clientlock=1 — server.unlock()

00 00 11 |10 ##H#H##|11 #H###| 00 11 11 client?act() — server.act()

00 01 10 |10 ###H##|11 #H###| 00 10 10 server?act_-done() — client.act_done()

00 01 00 |10 ###H##|11 #4##| 00 10 00 server?lock_false() — client.lock_false()
00 01 01 |10 ##H#H##|11 #H###| 00 10 01 server?lock_true() — client.lock-true()
00 01 11 |10 ##H#H##|11 #H###| 00 10 11 server?unlock-done() — client.unlock_done()

00 00 01 10 00 00 11 010 00 10 00 client?lock() & server=locked & client # locked

— client.lockfalse()

Table 5. The generated classifier system for a single run.

5.2 Discussion

In our approach, the problem of 'writing correct adaptors’ is shifted to the prob-
lem of ’specifying correct test sets’: whenever the developer of a process encoun-
ters an incompatibility, he needs to specify a new test scenario that avoids this
behaviour. This test scenario is given as additional input to the genetic algo-
rithm, so that the algorithm can find a solution that avoids this incompatibility.
The result of this approach is that the programmer does not have to implement

Generating Protocol Adaptors for Interprocess Communication 11

the adaptors directly, but instead has the responsibility of writing good test sets
(i.e., a consistent set of scenarios that is as complete as possible). This is a non-
trivial problem, since the test set needs to cover all explicit as well as implicit
requirements. The main advantage of test sets over explicit adaptors is that we
would need a new adaptor for every pair of communicating processes, while we
only need one test set for each individual process. As such, test sets are more
robust to changes in the environment: when a process needs to communicate
with a new process, there is a good chance that the test set will already take
into account potential protocol conflicts. Another important advantage of test
sets is that they can help in automatic program verification. Bugs in the formal
specification (the Petri net) can be detected and verified at runtime. As such,
this approach helps the developer to stay conform to the program specification.
This clearly helps him in his goal to write better software.

Below we discuss some strengths and weaknesses of our approach:
Automatically generated adaptors can be better than hand-crafted adapters
since they can reorder incoming and outgoing messages as necessary. This can
result in anticipated behaviour that boosts performance.

The genetic algorithm we proposed has the problem that it needs to learn a
certain behaviour based on a very small set of examples. Therefore, the learning
algorithm will automatically generate more general or more specific adaptors
when offered test sets. This tendency to generalize matches does not always
correspond to how a programmer tries to generalise. If there is a close corre-
spondence, the programmer simply needs to write test sets that will naturally
be generalised to the desired adaptor. On the other hand, if the generalisation
(or specialisation) does not fit the developer’s way of thinking, the algorithm
will generate seemingly illogical adaptors.

An ideal test scenario should cover all the actions that will be invoked upon the
server in all possible combinations. How can we write good tests that do not
leave any open holes for the programmer? And if we can write such tests, are
the Petri nets still necessary? In other words, is it possible to learn the adaptor
automatically just by looking at the interaction between the processes?

Some protocol conflicts that seem simple at first sight cannot be solved (not
even by humans). For example, the locking protocol example could be used to
lock simple (z,y) - specified cells on a checker board. It is impossible to protocol
this with a locking strategy that locks and unlocks the whole board at once. A
simple solution such as ‘lock all fields’ will not work because other communication
partners can enter the field and lock a single position. This indicates that the
approach presented here is good in solving ‘control flow’ problems but is bad at
converting ‘data representations’. However, this is a general AI problem [11] for
which no solution yet has been found.

In this paper we presented only a simple example with small protocols (binary
versus counting semaphore locking strategies) for the sake of the presentation.
We are currently investigating how we can write adaptors by generating a suit-
able petri-net instead of a classifier system. More elaborate experiments and
technical details can be found on http://borg.rave.org/adaptors/.

12 Van Belle et al.

6 Conclusion

We proposed an automated approach to create intelligent protocol adaptors to
resolve incompatibilities between communicating processes. Such an approach is
indispensable to cope with the combinatorial explosion of protocol adaptors that
are needed in an open distributed setting where processes interact with other
processes in unpredictable ways.

Our approach uses a genetic programming tecnique that evolves classifier
systems. These classifier systems contain classifiers that react upon the context
they receive from both client process and server process. The context is defined
as a combination of the possible client-side and server-side states as given by
a user-specified Petri net. To measure the fitness of an adaptor, the user needs
to provide test scenarios as input. This enables the user to avoid undesired
behaviour in interprocess communication.

Acknowledgements

Thanks to Johan Fabry, Tom Lenaerts, Anne Defaweux, Tom Tourwé and the
anonymous referees for reviewing this paper.

References

1. Hoare, C.: Communicating Sequential Processes. International Series in Computer
Science. Prentice Hall (1985)

2. Milner, R.: Communicating and Mobile Systems: the m-calculus. Cambridge Uni-
versity Press (1999)

3. Lea, D.: Concurrent Programming in Java (2nd edition) Design Principles and
Patterns. The Java Series. Addison Wesley (2000)

4. Reisig, W.: An Informal Introduction To Petri Nets. Proc. Int’l Conf. Application
and Theory of Petri Nets, Aarhus, Denmark (2000)

5. Glodberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison-Wesley (1989)

6. Krose, B., van der Smagt, P.: An introduction to neural networks. University of
Amsterdam (1996)

7. Sutton, R.S., Barto, A.G.: Reinforcement Learning — An Introduction. MIT Press
(1998)

8. Smith, S.: A Learning System Based on Genetic Adaptive Algorithms. PhD thesis,
Department of Computer Science, University of Pittsburgh (1980)

9. Bull, L., Fogarty, T.: Co-evolving communicating classifier systems for tracking.
Proc. Int’l Conf. Neural Networks and Genetic Algoriths (1993)

10. Koza, J.R.: Genetic Programming; on the programming of computers by means of
natural selection. MIT Press (1992)

11. Morgenstern, L.: The problem with solutions to the frame problem. In Ford,
K.M., Pylyshyn, Z., eds.: The Robot’s Dilemma Revisited: The Frame Problem in
Artificial Intelligence. Ablex Publishing Co., Norwood, New Jersey (1996) 99-133

