
Actors for Pervasive Computing

Jessie Dedecker∗and Wolfgang De Meuter and Werner Van Belle
(jededeck—wdmeuter—we47091@vub.ac.be)
Tel: +32-2-629.35.30 - Fax: +32-2-629.35.25

Vrije Universiteit Brussel
PROG - Department of Informatics

Pleinlaan 2
1050 Brussels

Belgium

1 Introduction

The position we want to defend in this paper is
twofolded:

1. First, we take the position that asyn-
chronous communication patterns are to
be considered as the main communication
paradigm between pervasive computing de-
vices.

2. Second, we argue that the actor model,
which employs asynchronous message pass-
ing as its main communication paradigm,
can be extended to provide better support
for pervasive applications.

Pervasive or ubiquitous computing means that
the technology should be so gracefully integrated
in our everyday life that the user is not aware of
the technology anymore [Wei91]. A good exam-
ple of this is wearable computers. To achieve
such a goal the software should adapt each time
a user moves to another environment. The act of

∗Research Assistant of the Fund for Scientific Research
Flanders, Belgium (F.W.O.)

moving is part of almost anybody’s everyday life.
This means that pervasive applications should be
able to detect and communicate with other de-
vices that they encounter in their everly chang-
ing environment. Because the user moves from
one space to another connections are lost and
new connections are created. This makes com-
munication between pervasive applications very
volatile. Communication over such volatile net-
works is difficult by means of traditional meth-
ods (such as RPC [BN83], RMI [WRW96] and
other synchronous variants). With synchronous
communication solutions there is an assumption
that the communication partner on the other end
is available. A communication partner that is
not available is the exception rather than the
rule. This is a glaring contrast to the frequent
movement of users that move from one space to
another. For this reason we find that existing
synchronous communication models (such as the
ones mentioned above) are not appropriate for
pervasive communication. In this position paper
we advocate the use of appropriate language con-
structs to support asynchronous communication

1

models for pervasive applications.

2 Pervasive Applications Com-
municate Asynchronously

Asynchronous (a.k.a. non-blocking) communica-
tion can perhaps best be compared to the act of
sending a letter via snail mail or electronic mail.
After somebody has sent a letter, he continues
with his life and later (somewhere in the unde-
fined future) when he receives a reply to his letter
he can read it and respond accordingly. To come
back to the world of computers, computation
continues after sending an asynchronous mes-
sage. So, there is no correlation between the time
of sending and the time of receiving a message.
However both communication partners must be
located in the same physical space. Synchronous
(a.k.a. blocking) communication, on the other
hand, can best be compared with a telephone
call to someone. When you call someone and
you ask him a question, then you usually get the
answer immediately within the same telephone
call. In the world of computers it means that,
with synchronous messages, communication can
only occur when both communication partners
(sender/receiver) are available at the same time
and place.

Pervasive applications often imply a discon-
nected operation because there can be a very
large delay between sending a message and re-
ceiving an answer. In extreme cases the delay
could be several days or months, for instance
when the device is not connected to any network
at the moment of sending a message. Therefore,
pervasive applications communicate inherently
asynchronously. However, implementing appli-
cations that work asynchronously is not easy at
all. Below we discuss two major problems.

2.1 Computational Context

Asynchronous communication is not a bed of all
roses and skittles – it comes with a cost and that
cost is the complexity of developing applications.
The complexity comes from the fact that com-
putation continues after sending a message. So,
after an asynchronous message is sent the actor
receives other messages. When the reply to the
first message is received the program needs to
restore the context in which that message was
sent in order to interpret the result it receives.
If we go back to our metaphor of sending a letter
through e-mail we see that the context is also re-
minded in the reply of the message using quoted
text – or – in the case of a letter sent by snail
mail companies often use reference ids in their
letters that should be placed on each reply to
that letter. The act of storing the computational
context when an asynchronous message is sent
and restoring the computational context when
the reply is received is very complex and leads
us to some kind of state based programming.

2.2 Environmental Context

Due to the continuous movement of the user from
one physical space to another, the available com-
munication partners often change. The devices
will often have to postpone tasks it was doing.
When the user moves again in communication
range of a communication partner then it should
resume its task, unless of course the task has
become obsolete (i.e. because the device was
able to make a booking at some other place).
With physical movement the device starts living
in another environment with different possibili-
ties (other devices become available) and differ-
ent limitations (devices disappear).

2

2.3 Actors

Actors [Agh90] are active objects that each
have their own thread of execution attached to
them. Messages between actors are sent asyn-
chronously. When an actor receives a message it
can [Agh90]:

• create a new actor

• send messages to known actors. The mes-
sage can contain the address of other known
actors

• modify its own state, there is no shared data
between actors

Figure 1 (from [VA01]) depicts the internal
model of such an actor. An actor is internally
equiped with a mailbox where all the received
messages sent to the actor are collected. An ac-
tor processes one message at a time until the
mailbox is empty. When the mailbox is empty
the actor waits for a message. There is no guar-
antee in which order messages in the mailbox get
processed.

There is no support for the context switching
problems associated with asynchronous commu-
nication mentioned above. In [VA01], the ac-
tor language is extended with linguistic support.
The linguistic support helps expressing synchro-
nisation and sequentiality between a set of ac-
tors. For example, syntax is added to put a se-
quential order on a set of messages.

2.4 Limitations of the Actor Model

The actor model has some limitations with re-
spect to pervasive computing:

• the model does not support disconnected
operation. This occurs frequently when a

Internal variables

module math;

behavior Faculty {
 int n;

 int compute() {
 if (n == 1)
 return 1;
 else
 return n * new Faculty(n -1)-
>compute();
 }
 void act() {
 new Faculty(6)->compute();
 }
}

Methods

State

Thread

Figure 1: Actor Model

user is moving from one space to another.
When a user moves out of range from a cer-
tain network, then messages sent by an ac-
tor are lost – and vice-versa the actors that
were living in that physical space and that
send a message to an actor living on the de-
vice that user was carrying are lost. In some
cases, the loss of messages is unacceptable,
i.e. in the case the actor was making a reser-
vation for some restaurant in the neighbour-
hood. Ideally, the interaction between the
actors should resume when the user enters
the space again.

• the model requires the application to know
its available communication partners when
the user arrives at a new location. This
is clearly unacceptable, because it conflicts
with the preposition that the application
should adapt to new environments. We need
a more abstract way to reference the set
of actors the application can communicate
with.

• multiple communication partners are com-

3

mon in ad-hoc networks [lKB02], like the
ones we envision for pervasive communica-
tion. For example, sometimes a pervasive
computing device would like to communi-
cate with all the devices in its neighbour-
hood.

• no support for computa-
tional/environmental context – the actor
model lacks support for the loss of context,
as explained above.

3 Changes to the Actor Model

In this section we make some preliminary propo-
sitions to extend the actor model so that the lim-
itations, pointed out above, are alleviated.

3.1 The Outbox

The current actor model encorporates one mail-
box for the incoming messages. So, when a mes-
sage is sent by an actor it is sent immediately to
the mailbox of the receiving actor.

We propose to extend the actor model with
an outgoing mailbox (outbox) next to the in-
coming mailbox (inbox). When an actor sends a
message it gets posted in its outbox. Messages
in the outbox are then sent out to the receiv-
ing actors. When a message is undeliverable, for
example because either the sending and/or the
receiving actor has moved out of range of the
network, then the message is kept in the outbox.
At regular intervals the actor retries to send the
message. The outbox is useful for disconnected
operation, because it allows the actor to send
messages at the time it has that intention, but
when it is impossible to reach the other actors.
The mechanism of an outbox takes away the bur-
den of regularly having to check if an actor has

become available for communication.

3.2 Multiplexed Inboxes and Out-
boxes

In the current actor model there is no order
in which received messages are processed. To
have better support for the different tasks an
actor is performing we propose to classify in-
coming and outgoing messages. The incoming
and outgoing messages are classified depending
on their computational and environmental con-
text. For example, in the case of environmental
context, messages sent to an actor that is cur-
rently unavailable could be classified together so
that when that actor becomes available, all mes-
sages are sent out at once. Another example, in
the case of computational context, all messages
received about the activity of making a reserva-
tion are classified all together. By classifying the
incoming and outgoing messages we can reduce
the burden of the developer, because the actor
can process all the messages that belong to the
same context sequentially.

3.3 Filters

We already explained above that we can classify
incoming and outgoing messages to help with the
problem of context switching. Filters are used
to classify incoming and outgoing messages de-
pending on the context they belong to. When a
message is sent or received by the actor, then it
must be classified. We propose to use a declar-
ative language to classify the incoming and out-
going messages.

3.4 Explicit Mailbox Management

We foresee that there will be a need for de-
scribing some quality of service (QoS) proper-

4

ties when sending a message. These QoS prop-
erties can range from very simple things like how
long should the actor retry sending a message be-
fore giving up to more advanced QoS properties
like timing constraints, properties depending on
the state of the actor. For this there will be a
need to manage the inbox and outbox explicitly.
More concretely we propose a management sys-
tem that can:

• Add and remove messages

• Determine what message should be pro-
cessed next by the actor

3.5 Reference by Query

Currently, an actor has two ways for getting a
reference to another actor:

1. by name

2. passed an argument in a message

When a pervasive computing device enters a
completely new space then it does not know any
names of the actors living in other devices, nor
do the inhabitants of that space know the new
actor. We need to introduce language constructs
for referencing actors in other ways than just
their name. For this reason we propose a mech-
anism for referring to an agent using a query on
the messages that the agent should understand.

We can implement such a query mechanism in
three ways:

1. by creating one actor in each space with a
standardized name that is serving as a re-
ceptionist and helps new immigrating actors
to know the inhabiting actors of that space.

2. by sending out a broadcast message to all
actors in the network. Actors receiving the

message can then decide whether and how
to handle this broadcast message.

3. by a combination of the two above. That is,
the receptionist actor is identified using a
broadcast message and is from then on used
to retrieve the references to the inhabiting
actors. The combination approach is also
used by Jini1 [Edw99].

The first and third method require a separate
service (a receptionist actor in our case) to be
available in the network and this is not always
feasable. This is especially true in the case of ad-
hoc networks. For example, three persons that
go hiking in the forest, all wearing devices (such
as GPS) to help them. All these devices form
a dynamic network and there is no receptionist
service available in such a dynamic environment.

4 Conclusion and Future Work

In this paper we argued that the asynchronous
communication patterns are to be considered as
the main communication paradigm in a perva-
sive computing context. Asynchronous commu-
nication patterns fit well in a pervasive comput-
ing context, because communication in ad-hoc
networks is asynchronous. Mapping synchronous
communication patterns, such as RPC or RMI,
put lots of work on the programmer’s shoulders.

We also argued that the actor model, which
supports asynchronous communication patterns,
offers a good starting point. However, the actor
model has some limitations when applied in the
context of pervasive computing. We pointed out
that the actor model can be extended to provide
better support for use in the context of pervasive
computing.

1Trademark of Sun Microsystems

5

We are currently developing an actor language
that is based on the extensions proposed in sec-
tion 3. Afterwards we will implement some con-
crete examples to test the usability of our exten-
sions.

References

[Agh90] Gul Agha. Concurrent object-
oriented programming. Communi-
cations of the ACM, 33(9):125–141,
1990.

[BN83] A. D. Birrell and B. J. Nelson. Im-
plementing remote procedure calls.
In Proceedings of the ACM Sympo-
sium on Operating System Principles,
page 3, Bretton Woods, NH, 1983.
Association for Computing Machin-
ery.

[Edw99] W. Keith Edwards. Core Jini. Pren-
tice Hall PTR, 1999.

[lKB02] lan Kaminsky and Hans-Peter
Bischof. Many-to-many invocation:
A new object oriented paradigm
for ad hoc collaborative systems.
17th Annual ACM Conference on
Object Oriented Programming Sys-
tems, Languages, and Applications
(OOPSLA 2002), 2002.

[VA01] Carlos Varela and Gul Agha.
Programming dynamically recon-
figurable open systems with salsa.
ACM SIGPLAN Notices, 36(12):20–
34, 2001.

[Wei91] M. Weiner. The computer for the
21st century. Scientific American,
265(3):66–75, 1991.

[WRW96] A. Wollrath, R. Riggs, and J. Waldo.
Adistributed object model for the
Java system. In 2nd Conference
on Object -Oriented Technologies &
Systems (COOTS), pages 219–232.
USENIX Association, 1996.

6

