
Glueing Components in
Wide Area Networks

Werner Van Belle

Official Member of Quick & Dirty (inc)

Glueing Components
Together
 Doesn’t work in Distributed

Environments
 Need Stub – compilers (non dynamic)
 Changing Implementations
 Very Static Linkage between

Components

Glueing Components
Together
 Advantages in distributed

environments
 Rigid Defined Protocol between

components (contrary to OO)
 Real Data Encapsulation
 Loosely coupled

Glueing Components
Together
 Writing distributed applications

 Is hard, because we have to implement the
protocol ourselves

 Is difficult, because it’s almost always
asychronously

 Is bothersome, because we have to take
errors into account

 Makes you tired, because you have to
implement a new MOP each time you
communicate with remote objects.

But the …
 Real problem lies in the language

constructs which are offered.
 They only aim at synchronized

communication.
 They enforce a certain calling

methodology upon the programmer

Call-With-Current-
Continuation
 Problems:

 Difficult to explain
 Difficult to understand
 Difficult to use

 Badly Integrated into current day
languages

The Return Continuation
 Makes things easier

 To explain: The return continuation
represents what will happen when
your function returns.

 Easy to use:

A typical Q & D.irty (Inc) example (1)

Ctx: void
CalculateAsync()

{Ctx:=return;
void}

{display(CalculateAsync());
 display(“test”)}
:: voidtest

A typical Q & D.irty (Inc) example (2)

Ctx(100)
:: 100test

Ctx(5)
:: 5test

Furthermore: The Return
Continuation
 Is definitely ‘more cool’

 The return continuation can be called
directly from within a function.

 The return continuation can be send a
message to as a form of exception
handling

Another typical Q & D example
-- calling the return continuation

somePicoFunction(t)::
{
if(is_void(t), return(0), false);
if(is_text(t), return(1), false);
if(is_number(t),

return(void),false);
2
}

Another typical Q & D example
-- sending messages to the return

Notatable()::
display(“sorry…”);

somePicoFunction(t)::
if(not(is_table(t)),

return.Notatable(),
2);

display(somePicoFunction(30))
:: sorry…

Still Further More:
 The return contination allows

 The implementation of the Arrow-
operator: a way to happiness in
distributed environments

The Arrow Operator
 Changes the return of the receiver

a..calculate(50)->display

 Allows a redefinition of the Standard
Control Flow

 Will be implemented in the next release
of Cborg called: Borg on Cubes.

