
Glueing Components in
Wide Area Networks

Werner Van Belle

Official Member of Quick & Dirty (inc)

Glueing Components
Together
 Doesn’t work in Distributed

Environments
 Need Stub – compilers (non dynamic)
 Changing Implementations
 Very Static Linkage between

Components

Glueing Components
Together
 Advantages in distributed

environments
 Rigid Defined Protocol between

components (contrary to OO)
 Real Data Encapsulation
 Loosely coupled

Glueing Components
Together
 Writing distributed applications

 Is hard, because we have to implement the
protocol ourselves

 Is difficult, because it’s almost always
asychronously

 Is bothersome, because we have to take
errors into account

 Makes you tired, because you have to
implement a new MOP each time you
communicate with remote objects.

But the …
 Real problem lies in the language

constructs which are offered.
 They only aim at synchronized

communication.
 They enforce a certain calling

methodology upon the programmer

Call-With-Current-
Continuation
 Problems:

 Difficult to explain
 Difficult to understand
 Difficult to use

 Badly Integrated into current day
languages

The Return Continuation
 Makes things easier

 To explain: The return continuation
represents what will happen when
your function returns.

 Easy to use:

A typical Q & D.irty (Inc) example (1)

Ctx: void
CalculateAsync()

{Ctx:=return;
void}

{display(CalculateAsync());
 display(“test”)}
:: voidtest

A typical Q & D.irty (Inc) example (2)

Ctx(100)
:: 100test

Ctx(5)
:: 5test

Furthermore: The Return
Continuation
 Is definitely ‘more cool’

 The return continuation can be called
directly from within a function.

 The return continuation can be send a
message to as a form of exception
handling

Another typical Q & D example
-- calling the return continuation

somePicoFunction(t)::
{
if(is_void(t), return(0), false);
if(is_text(t), return(1), false);
if(is_number(t),

return(void),false);
2
}

Another typical Q & D example
-- sending messages to the return

Notatable()::
display(“sorry…”);

somePicoFunction(t)::
if(not(is_table(t)),

return.Notatable(),
2);

display(somePicoFunction(30))
:: sorry…

Still Further More:
 The return contination allows

 The implementation of the Arrow-
operator: a way to happiness in
distributed environments

The Arrow Operator
 Changes the return of the receiver

a..calculate(50)->display

 Allows a redefinition of the Standard
Control Flow

 Will be implemented in the next release
of Cborg called: Borg on Cubes.

