
STWW-programma

SEESCOA:
Software Engineering for Embedded Systems

using a Component-Oriented Approach

Refinement of the Component
Architecture

Werner Van Belle
werner.van.belle@vub.ac.be

1st October 2001

Contents

1 Intr oduction 5

2 Usage Of The Architecture 6

2.1. On board . 6

2.2. Boot Up . 6

Using a certain scheduler 6

Tracing/Timing messages 7

Loading a certain component 7

2.3. Creation & Initialisation . 7

2.4. component ComponentSystem . 8

Description . 8

Creating a new component 9

Retrieving notification of new component systems . 9

The Component Interface (0<=noi) 9

2.5. Tool . 10

3 The Component Architecture Design: Internals 12

3.1. The failure of the Existing Architecture 12

3.2. Improved Message Handlers . 13

Catching the received messages 13

Catching the send messages 13

Filtering messages . 13

Meta level control with a list ? 14

Meta level control with sender/receiver components ? . . . 14

Meta level control with a switching table ? 15

Meta level control with translation tables 15

3.3. The Interpreter Core . 15

3.4. How about Ports, Multiple Ports, Multiports ? 16

1

�����������
	������������� ���������������

4 Making the Component System Distrib uted 19

4.1. Peer to Peer vs Client Server . 19

4.2. Error Handling & Partial Failure; Quality Of Service 19

4.3. Writing the Portal . 20

Overtaking the original Component System 20

Creating new Components 21

Finding and Referring other Component Systems 21

Passing through all outbound messages 22

Passing unhandled messages through to the component
system . 22

An Example . 23

The Infrastructure port to The Portal (0<=noi<=1) 24

4.4. Error Handling, 2nd Round: The Controller 25

Component Join & Disjoin 28

Component System Disconnection 28

port ComponentSystem (noi=1) 28

multiport Controller (noi=1) 29

4.5. Why we didn’t use Jini . 29

An example piece of Asynchronous Java code: Learn to
Listen. 29

A “simple” example of Jini Code: 3 pages ’Hello world’. . . 30

5 Conc lusion 34

2

List of Figures

2.1 Creating a Component . 10

3.1 MSC illustrating the sending and receiving of messages. The ob-
ject level are the lines of code written by the component develop-
per. The meta level is the interpreter that takes care of delivering
messages. 16

3.2 MSC illustrating the sending and receiving of messages by means
of proxies. Only A has been proxied. 17

3.3 Using components as ports. 17

4.1 MSC illustrating how a message is forwarded through the portal.
The Message <U> means undeliverable and wraps message <M>. 23

4.2 MSC illustrating how an incoming message is handled. 24

4.3 Connecting multiple component systems with each other 26

4.4 Disconnecting a component system 27

3

List of Tables

3.1 Original setup. Component A, B, C in peace next to each other. . . 14

3.2 If B becomes a proxy for A, B has to create a new name for A and
take over A’s original name. 14

3.3 If now, C becomes a sending proxy for B, all messages send from
A has to be handled by C. 15

4

1. Intr oduction

This document describes the refinements we have made to the component ar-
chitecture over the past 9 months. First we describe some of the esthetic things
we’ve added to the system. These smaller refinements include the addition of
a port principle. We’ve changed the initialisation procedure of components and
other small things. In general this first section describes how one can use the
component system now. The second part of this document describes some larger
design enhancements, mainly to see with reification of components. This section
delves a bit deeper into the component system. It discusses the why and how of
the architecture. The last part describes how the component system has been
made to work in a distributed context. This section also discusses why we didn’t
use Jini for making the component system distributed.

5

2. Usage Of The Architecture

The component system is the infrastructure (framework, architecture, or kind of
operating system), which makes component instances work together, which glues
them and creates a homogenous environment for them. The component ssytem
can be seen as the middle-ware which connects different components and which
makes them work together.

The component systems offers this functionality by means of asynchronous mes-
sage sending. This was documented in deliverable 3.3b. [BU00]

2.1. On boar d

One of the first things we absolutely needed was the ability to run the component
system and the demos on the camera-board. This was no problem, except for
some minor version mismatches between the Java virtual machines. Notable
were the problems with different versions of the AWT.

A second problem we had to solve was the long development cycle. Writing code,
sending it to the client, starting and debugging takes a long time if you don’t have
a good synchronisation tool. Therefore we added CVS to the board which allowed
us to check out a .jar file which can be run immediately. This jar file is made on
the deployment box by a simple make command with an automated CVS commit.

2.2. Boot Up

Booting the system is of course also a problem. We don’t want a component
’system’ which should be loaded from within the main progam. Instead we want
a component architecture which is able to load other components, also includ-
ing a main component. The component system is now started by loading the
ComponentSystem class.

Using a certain scheduler

The parameters given to the main program are first checked for scheduler pa-
rameters. Possible schedulers are the Standard scheduler (std) , and an Earliest
Deadline First scheduler (edf), although we didn’t check whether this one still
works or not. There is an experimental StupidScheduler (dumb) which doesn’t
guarantee orderly delivery and an extremely fast but single threaded OneThread

6

�����������
	������������� ����	���������������	������ !�������"��"�

scheduler (one). If no scheduler is given the standard scheduler is used. If we
choose the standard scheduler or the stupid scheduler we can specify how much
threads should be used at the same time. Examples are given below:

#
$&%"$('&)�*,+,)�-,.&-�/103254�25/".6*7098�)�*,+")�-".&-�/
:�4�2�/�.�*(2
'�;".�<�=�>�.&?1@A.�<
B
#
$&%"$('&)�*,+,)�-,.&-�/103254�25/".6*7098�)�*,+")�-".&-�/
:�4�2�/�.�*(2
'�;".�<�=�>�.&?1@C25/�<
#
$&%"$('&)�*,+,)�-,.&-�/103254�25/".6*7098�)�*,+")�-".&-�/
:�4�2�/�.�*(2
'�;".�<�=�>�.&?1@C25/�<D@AE
#
$&%"$('&)�*,+,)�-,.&-�/103254�25/".6*7098�)�*,+")�-".&-�/
:�4�2�/�.�*(2
'�;".�<�=�>�.&?1@C25/�<D@GF�H
#
$&%"$('&)�*,+,)�-,.&-�/103254�25/".6*7098�)�*,+")�-".&-�/
:�4�2�/�.�*(2
'�;".�<�=�>�.&?1@9<�=&*"I
#
$&%"$('&)�*,+,)�-,.&-�/103254�25/".6*7098�)�*,+")�-".&-�/
:�4�2�/�.�*(2
'�;".�<�=�>�.&?1@A)&-,.

Tracing/Timing messages

If we want to trace messages or want to time messages we can use the spe-
cial message fields at the command line. Tracing is done by specifying mes-
sages:trace, timing can be done by using messages:time. The minimum, max-
imum and average times are recorded. The total duration and count are also
tracked.

#
$&%"$('&)�*,+,)�-,.&-�/103254�25/".6*7098�)�*,+")�-".&-�/
:�4�2�/�.�*J*K.,2�2&$�L".,2M@N/
?"$,'�.
#
$&%"$('&)�*,+,)�-,.&-�/103254�25/".6*7098�)�*,+")�-".&-�/
:�4�2�/�.�*J*K.,2�2&$�L".,2M@N/KO�*K.

Loading a certain component

Now, if we boot the component system we often want to specify which compo-
nents should be loaded. To do this we specify a component field, that contains
the blueprint (the full class name) of the component to be loaded. After that we
specify the name of the instance we want this component to have. For example,
if we want to load the Httpd example [BU00] we can do this by

#
$&%"$('&)�*,+,)�-,.&-�/103254�25/".6*7098�)�*,+")�-".&-�/
:�4�2�/�.�*QP
'&)�*,+")&-,.&-�/R@C'&)�*,+")&-,.�-
/R0A.�S
$�*"+,>�.,2�0T;�/�/�+�<R0NU�/
/�+�<R@V4".�$&;

Now, if more components are given, they are loaded in sequence. A new com-
ponent is only loaded when the previous component has completely finished its
initalisation. (For the component system this means that no more messages are
left onto the queue).

2.3. Creation & Initialisation

There are some issues which have changed. (The reason why will be discussed
in the Internal Design of the Component system). One of these is the creation of
components. Instead of calling a CreateComponent upon the component system,
we now send a CreateComponent to the ComponentSystem.

7

�����������
	������������� ����	���������������	������ !�������"��"�

8�)6*,+,)&-,.�-�/":�4�2�/".�*�0C'6?".�$&/�.�8�)�*,+")�-".&-�/�W
X '&)�*"+,)&-,.&-
/10A.�S"$6*,+�>�."2M0V;�/�/�+�<D0VU
/
/&+"<�Y[Z
X U
/
/�+"<
Y�\

becomes

X 8
)�*,+,)&-".&-�/":�4�25/".�*�Y]0
0N8�?�.
$�/
.�8
)6*"+,)&-�.&-
/[W
^�_ >�=".&+�?KO6-
/1@ X '&)6*,+,)�-".�-�/10N.�S�$6*"+�>�.�2�0`;
/�/�+"<]0NU�/�/�+�<
Y
a�Z
^,b -K2�/"$&-K'&.]@9Y�U
/
/�+"<
Y�a"\

Furthermore, we added the necessary posibility to add arguments to the creation.
For example, if a component needs a number in the <Amount> field as illustrated
below.

0
0�0
*K."2
2&$�L". b -�O�/]W�\
c
:�4�25/�.�*�0A)&=
/10V+�?KO�-�/,>5-]W X�d *�)&=�-
/QO�2 X"e ^,b -�/".&L".�?7f d *K)&=�-
/,a"\�g
h

0
0�0

When creating the component we can write

X 8
)�*,+,)&-".&-�/":�4�25/".�*�Y]0
0N8�?�.
$�/
.�8
)6*"+,)&-�.&-
/[W
^�_ >�=".&+�?KO6-
/1@
0
0
0NY"a�Z
^,b -K2�/"$&-K'&.]@ X�i >�$�Y"a�Z
^ d *K)�=
-�/1@V-".&j b -
/".�L".�?[WCk
l�\&a"\

2.4. component ComponentSystem

Description

The Component System component is a component which interfaces the compo-
nent system to any other component. While designing the case we encountered
the need to retrieve information from and put information into the component sys-
tem in an uniform way. A uniform way in the sense that we ’send a message’
to the component system, and not ’call a method upon the component system’.
We needed the ability to treat the component system as if it were a component
itself. This was necessary to make distribution easier. The actions the component
system component should be able to undertake are

m Check correct working of internal Queues. Queues overflows should be
reported

m Check correct interconnection with other component systems. Disconnects
and connects should be reported

m Create new components.

8

�����������
	������������� ����	���������������	������ !�������"��"�

m Destroy existing components.

m Retrieve all kinds of information from the component system, like for exam-
ple: the name of the system.

m All other functionalities which are now accessed by means of plain method
invocation. Except for the sending of a message itself. This still must be
done by calling a method.

We will now discuss two of the cahnges resulting from this reification.

Creating a new component When creating a new component, we ask the com-
ponent system to create a new component from a given blueprint. This is done
by sending a message to the component system. This is not done by calling a
method upon the local component system. This allows us to send a CreateCom-
ponent message to another component system.

Retrie ving notification of new component systems When a new component
system connects, we want to receive a notification of this event.

The Component Interface (0<=noi)

Belowm we discuss the interface a component will be able to use at the compo-
nentsystem.

in CreateComponent(BluePrint:<String>, Instance:<String>) When retrieved
the component system will create a new component with name In-
stance. Instance will be prefixed by the name of the component sys-
tem and suffixed with a unique identifier. As such, when creating a
new component, we don’t know its name because its name is not
the Instance. The name will be send back to Return1 by means of
Instance. BluePrint is a string referring to the class file. Instance is a
String.

out ComponentCreated(BluePrint:<String>, Component:<String>) Send out
to the requester of a component-creation. The Blueprint is a copy of
the original requested BluePrint. Component is the actual name of
the created Instance.

in Init() Is send out by the component system to all new created compo-
nents. Since the component system component is a component, it
will also receive this message. When received, the component sys-
tem component will load all components which could be found on the
command line.

1Return is one of the predifined fields offered by the component system. Return refers to the
sender of a given message. Other predefined fiels are “Target”, “Invoke”. These are described in
detail in [BU00]

9

�����������
	������������� ����	���������������	������ !�������"��"�

Component
A

Component System
CS

CreateComponent(BluePrint:"Test",Instance:"t")
Component

t13
..create..

Init()

ComponentCreated(BluePrint:"Test", Component:"t13")

Figure 2.1: Creating a Component

out Init() Is send out by the component system to new created components.
Init is the first message which will arrive at a component.

in Destr oyComponent(Component:<String>) when retrieved, the given com-
ponent instance will be removed from the component infrastructure.
(If the component is at another component system, it will also be
removed).

2.5. Tool

The component architecture is packaged with a tool, a component transformer,
which is needed to convert .component files to .java files, which in their turn can
be compiled. This tool has received two extra keywords, which are questioned
at the moment of this writing. The first keyword is port, the second multiport.
The port can be used instead of String. Multiport is a keyword which expands to
Multiport, which is a descendant of a Vector. Anything send to a multiport will be
delivered to all subscribed parties. Other components can connect to a multiport
by sending a Connect message to a component. Eg. Component a is written as
follows:

'&)6*,+,)&-,.�-�/�'�>�$"2
2 d
c
+,)�?
/n$[g
*,=�>&/�O6+,)�?
/oIRg
h

Component B makes use of component A and subscribes himself to port a and
b. The argument Port refers to the port at A to which component B wants to
connect. The argument With containts the component to which this port should
be connected:

10

�����������
	������������� ����	���������������	������ !�������"��"�

d 0�098�)&-
-".,'5/]W ^�p)�?
/1@ X $�Y�aMZ ^�q O�/�;1@ d a,\
d 0�098�)&-
-".,'5/]W ^�p)�?
/1@ X I�Y�aMZ ^�q O�/�;1@ d a,\

11

3. The Component Architecture Design: Internals

This section describes the internal architecture of the component system. In this
section we will illustrate the missing features of the original component system as
well as the quite general solutions we offer.

3.1. The failure of the Existing Architecture

But first, we have to discuss the failure of the existing infrastructure. The existing
infrastructure was not good enough because some very simple things were very
hard to achieve. Below we summarise a number of shortcomings:

1. Creation of components had to be done by an immediate call. In fact,
the component system was like a black box which you had to call syn-
chronously. This did not conform with our own requirement that everything
should happen asynchronously. Access to the component system itself was
done concurrently, which became quite hard to manage.

2. Message handlers were a kind of mess, although very nice, they were com-
pletely useless if we wanted to make the system distributed. Their original
goal of providing a uniform way to handle messages failed because mes-
sage handlers were not components themselves. This required us to create
stubs and proxies (with Java RMI) for every component we instantiated.

3. Making the component system distributed required both of the above things.
We needed the ability to send a message to another component system,
which in turn should either create a component, handle a message or do
something similar. On top of this we needed the ability to intercept failures
of the local component system, which we could not do with the existing mes-
sage handlers because they were also unreachable from remote systems.

4. In the future, if we want to reason about the control flow of the system and
want to enforce a certain ordering upon the system we might need the ability
to change the complete message handling strategy. So anyhow, the basic
component system support should make as less as possible assumptions
about the use of it.

12

�����������
	������������� ����������r7�,���K�����s	������ !�������"��"�ut����& v�"��w� x�����&,��	�yz�

3.2. Impr oved Message Handler s

We improved the message handlers first by rewriting them completely. The goal
of a message handler is the ability to see what a component sends out and to
see what a component receives. On top of this the message handler should be
able to filter the message at hand or reroute it.

Catching the received messages

Catching received messages is not really a problem in our system, we can easily
reassign the receiver of a component to point to another component. Eg. If the
component system has the name Alfa linked with component alfa and component
Beta wants to see whatever Alpha receives it can ask the component system to
create a new name Yamma which is bound to alfa. After that it rebind beta to
Alfa, such that Alpha points to the actual component beta. If this is done, all
messages send to the component “Alpha” will be received by component beta.
Of course, instead of immediately handling the messages the component system
should send a ReceiveMessage message to this proxy component. Beta can now
look at the message and send it through to Yamma, which was the original A. This
operation can be repeated as many times as necessary.

The only thing the component system has to do is to call receiveMessage upon
the component if the component is what is expected, otherwise if it is a proxy the
ComponentSystem should send a ReceiveMessage to the component.

Catching the send messages

Now, when trying to catch the outgoing messages of a component we encoun-
tered a more difficult problem. Object Oriented languages are driven by the mes-
sages send to other components, they are not driven by the messages received.
This means that we can relatively easy override the receiver of a component
by acting as if, but it is quite difficult to catch outgoing messages since sending
of messages are done immediatelly. We didn’t want this ugly discrepancy, we
wanted as much the ability to intercept messages being send as messages being
received by a component. Even worse, we wanted to offer this in the same way.
Just like an object first sees what a component would have received, we want to
see what a component would like to send before it is actually send.

We offered this by introducing messagesender-components. If the sender of a
component is what is expected, we just send the message, if the message sender
is a proxy, we send a SendMessage message from the component system to the
proxy.

Filtering messages

To summarise, we see how all components can act as a sending or receiving
proxy for a component. If they are acting as a proxy they receive ReceiveMes-
sage and SendMessage messages. If they want to do something, like lets say,

13

�����������
	������������� ����������r7�,���K�����s	������ !�������"��"�ut����& v�"��w� x�����&,��	�yz�

sender handler sender/receiver receiver handler
null A A
null B B
null C C

Table 3.1: Original setup. Component A, B, C in peace next to each other.

sender handler sender/receiver receiver handler

null A B
null B B
null C C

AOrig A

Table 3.2: If B becomes a proxy for A, B has to create a new name for A and take over A’s
original name.

removing the message or passing it to somebody else, we have to look at the
message. To both procedures the message is passed in the <Message> field.

Meta level control with a list ?

The first possibility to add in the component system was for every component a
set of components which should see every message before it actually reaches the
targeted component. This does not work because it is very difficult to intercept
and stop messages this way. Furthermore the component system has a bit too
much state in this scenario. If we want to make this distributed, things become
much more difficult. So, a meta-level linked list is no good solution for catching
incoming messages. Nevertheless, nothing stops you from creating your own
object-level linked list by re-binding component names.

If we think about this solution for sending messages we also see the problem of
intercepting outgoing messages, so this also is not useful.

Meta level control with sender/receiver components ?

The possibility we finally use is a set of tuples, every tuple containing three fields.
The first field is the component which will handle the message, the second field
is the component which will be used to send a message and the third component
is the actual component which is overridden by both proxies. Proxying incoming
messages is done by replacing the name of a given component with a new tuple.
Catching the send messages is easily done by specifying a new sender-handler.

We will illustrate this below. Suppose we have component A which needs to
be proxied for incoming messages by proxy B, Component C is the proxy for all
outgoing messages. The original table 3.1, with nothing special in it. Table 3.2
shows how B becomes a proxy for A and table 3.3 shows how A is proxied by B
and C.

14

�����������
	������������� ����������r7�,���K�����s	������ !�������"��"�ut����& v�"��w� x�����&,��	�yz�

sender handler sender/receiver receiver handler
C A B

null B B
null C C

AOrig A

Table 3.3: If now, C becomes a sending proxy for B, all messages send from A has to be
handled by C.

Meta level control with a switching table ?

Of course, the small tables from above are not suitable if we want 20 sender-
listeners on one component. Therefor we might think of introducing a cross table
in which we have on the Y-axis the from field and on the X-axis the target field.
In every box we put a sendmessage and receivemesssage notification, just as
above. Of course this system takes unbelievable much space and is not much
more flexible.

Meta level control with translation tables

A more flexible solution, but more time consuming is using something like IP-
tables in which we specify a pattern of messages which will be translated to
something else. Of course the problem with this kind of tables is their lack of
management. It is quite easy to say that everything from component C to compo-
nent B should be translated to ReceiveMessage upon D, but what happens if we
create a proxy for C, either by redirecting everything first to us or by renaming C.
In both cases we have unwanted behaviour. In the first, we see how it is impossi-
ble to add another extra proxy, in the latter we see how all rules already applying
to C become invalid after renaming C.

3.3. The Interpreter Core

If we look at the meta object protocol of object oriented languages we see things
like sending messages waiting for the answer and continuing. Even the most sim-
ple (and accordingly most powerful) meta object protocols[Wol89] use a system
in which the basic behaviour consists of sending a message. Nevertheless they
are all synchronous. This doesn’t work, therefore approaches like [RJM { 98] are
quite useful. Below is the description of the meta level protcol used in the com-
ponent system. The working of the interpreter is described in the msc in figure
3.1. Figuresldkfjsdkljf contains a more ellaborate exmaple. It shows how to
use a proxying sender and receiver. A more practical example illustrating how to
use these proxies will be given in , figure 4.1.

+
=�I�>,O�'J%"),O5<Q:
.&-"<�|�.,2
2&$�L�.�WC:�/
?�O�-�L}2&.&-�<�.�?DZ~|"."2
2&$�L".�*�\
c
:&/
?KO6-�L�+
?")�S
4��&-,$�*K.,2M0�>�)
)��&=
+]W�2�.&-"<�.�?�\�032&.&-
<�.&?
8�)6*,+�)&-".�-�/]g

15

�����������
	������������� ����������r7�,���K�����s	������ !�������"��"�ut����& v�"��w� x�����&,��	�yz�

Meta Object
A

Object
B

sendMessageFrom("A",<M>)

lookup sendproxy("A")

receiveMessage(<M>)

lookup receiveproxy("B") receiveMessage(<M>)

Figure 3.1: MSC illustrating the sending and receiving of messages. The object level are
the lines of code written by the component developper. The meta level is the interpreter
that takes care of delivering messages.

O�B�WA+
?")�S
41�N��-
=�>
>"\��".���=,.&=,.&|".,2
2&$&L".�W`*�ZN+�?")�S
4]Z���:�.&-
<�|�."2
2�$�L
.K�&\�g
.
>"2&.(2
'�;,.�<�=�>�.�?R0C2
'�;,.�<&=�>�.��")&?���S".,'�=�/�O5)�-DWV*�\�g
h
+
=�I�>,O�'J%"),O5<}�".,'&.�O6%".�|".,2�2&$�L".�WA|�.,2
25$�L�.�*�\
c
i I,#
.,'5/�+
?")�S
4��&-,$�*K.,2M0�>�)
)��&=
+]W`*70NL".�/
��$&?�L".�/�W�\�\�0N?�.,'5.�O6%�.�?
8�)�*,+")�-,.�-�/[g
O�B�WA+
?")�S
4�O6-�25/"$&-K'�.
)�B�:&/
?KO6-�L�\��".���=,.�=,.�|".,2�2&$�L".�WT*�ZN+
?")&S
4[Z6�G��.,'�.�O�%".&|�.,2�2&$�L".��&\�g
.
>"2&.�W38�)�*"+,)&-,.&-
/K\6+�?")&S�410N?
.,'�.,O6%".�|
.,2�2�$&L".�WT*�\�g
h

3.4. How about Por ts, Multiple Por ts, Multipor ts ?

This meta level communication doesn’t offer immediate connections. It is connec-
tionless so to say. Of course, as everybody knows it is easy to add a connection-
oriented protocol on top of connectionless protocols. Since we want to do this
in an innovative way (with Contracts and Synchronization constrains placed upon
these connections) we have to explain how we can create ports, multiple ports
and multiports with the componentsystem.

The idea is simple, ports, multiports and multiple ports are also components.
They have the name of the component to which they belong but are suffixed with
the name of the port. So if component A has a port b,c, both ports will be compo-
nents, called A/b and A/c. These two ports should be created by component A in
the Init method. This is illustrated in figure 3.3.

This allows very interesting uses of ports: we are able to see which messages

16

�����������
	������������� ����������r7�,���K�����s	������ !�������"��"�ut����& v�"��w� x�����&,��	�yz�

Meta Object
A

Object
Proxy

Object
B

sendMessageFrom("A",<M>)

lookup sendproxy("A")

sendMessageFrom("ComponentSystem",<N>)

receiveMessage(<N>)

lookup receiveproxy("P") receiveMessage(<N>)

sendMessageFrom("P",<M>)

lookup sendproxy("P")

receiveMessage(<M>)

lookup receiveproxy("B") receiveMessage(<M>)

Figure 3.2: MSC illustrating the sending and receiving of messages by means of proxies.
Only A has been proxied.

Component A/alfa

Component A/gamma

Component A/beta

Component A

Figure 3.3: Using components as ports.

17

�����������
	������������� ����������r7�,���K�����s	������ !�������"��"�ut����& v�"��w� x�����&,��	�yz�

are sent and received on a certain port by wrapping it an assigning new message
handlers. This way some remote actions can be triggered if a port sents out
something. Of course, this kind of usage is not advised because we better create
an immediate link with the component in this case.

Another interesting use, is the use of higher level ports which offer some kind of
subscribe/notify mechanism. Of course, the current component sytem offers spe-
cial syntax for this, but we might as well remove this syntax because everything
(and even more) can be done by using these kind of ports.

18

4. Making the Component System Distrib uted

The refinement of the component architecture also included a subtask which
aimed at developing a distributed component system. We will now illustrate how
easy this is done using the new meta-level architecture described above. But first,
we need to have a look at properties of distributed systems.

4.1. Peer to Peer vs Client Server

A major question we have to ask ourselve when faced with the perils of distributed
computing is whether we want to use a client server model or a peer to peer
model. Both models have their strengths and disadvantages.

Client server computing allows us to offer a more or less secure environment in
which we can control errors and in which one server knows what’s happening.
The backside of this is that most of the computers of the network are not used to
their full capacity. This is where peer tot peer computing comes in.

Peer to Peer computing is a model in which all clients use and offer services to
other clients. These can be seen as components sending messages to each other
and reacting to incoming messages. Since we are using a component based de-
velopment we would like to use peer to peer communication, with all the problems
it brings with it.

4.2. Error Handling & Partial Failure; Quality Of Service

The biggest problem of peer to peer communications is the total chaos it creates.
Components absolutely don’t have a clue regarding the overall computation being
performed. Nothing is wrong with that of course as long as the system does
what it is designed to do. Problems occur whenever components start failing and
whenever something bad happens to the system. In normal computer systems
we either have the whole system failing or nothing failing, in distributed systems
we can have at any moment in time a failure of part of the system. This is bad,
because we cannot predict what will fail, nor can we devise a good error handling
strategy to solve this.

So, how bad is this ? The badness depends on two things. First: how many com-
ponents are there. If there are a lot of components running throughout the system
we will see the probability of a component failing rising.[RH90] The second thing
is the rate at which the network fails. If it fails a lot, it is almost completely unman-

19

�����������
	������������� rD	��� x���~����������r��,���K�������
�&�,����r}t� �,��, ��K������t

ageable to write correct working software. We might need a better data transfer
control protocol than the ones being used and the ability to recover components
which died. But this dependent very much on the quality of the environment, the
quality of service required by the application so to say.

4.3. Writing the Por tal

When making the component system distributed we will not create a new commu-
nication protocol, we will use a standard naming service (the java RMI registry)
and use that one to find other partners. All component names will be prefixed by
the name of the component system they are running on.

If we know the address of one of our communication partners we connect to it and
as long as the connection exists we take it for granted that the other component
is still functioning correct. If the connection is broken the component system
will send a notification to all subsribed components. So, the only client/server
architecture is the naming system. There exist better naming and routing systems
but they are beyond the scope of this project[BVD99].

The communication is initial done by means of Java RMI . Java RMI is solely used
as a transport medium, not as a distributed OO paradigm. In fact, we can easily
replace Java RMI by socket calls, but as a first step the easiness of Java RMI was
welcomed. The connections between components will all be passed through the
same connections, so component systems are connected with each other and by
absorbing a new communication protocol into the component system components
will be able to send messages to other remote components without the hassle of
compiling stubs, creating proxies, finding them etc etc.

To do this, we will create a component which overtakes the original component
and adds some functionalities. This component is called the Portal and man-
ages all outgoing connections as well as all incoming connections. The following
sections illustrate how this is done.

Overtaking the original Component System

The first thing we need to do is to overtake the standard component system. We
do this in the Init method.

*K."2
2&$�L". b -�O�/]W�\
c
�
���������
���� 6¡��� �¢(�&£�¤¥
¤K¦�§� K¨�©��"ª&«�©�¤�«�¬�¨
;,),25/�-,$�*K.�� b -,.�/ d <
<�?�."2�2�0NL
.�/

)"'&$�>5U")"2�/[W�\M0`L".&/�U")"25/�®"$6*�.�WG\�g
O6-�/¥+,)�?
/�-�?��
B�O�-"< p)�?�/[W�\�g
;,),25/�-,$�*K.��&;,),25/�-"$�*K. e ��@G� e +,)&?�/�-�?Dg
�
��¯��o°6±�¨��&¢�¦�²�¦6¤�«�©³ª��G¬&¡M��¤K¨6¤�´�µ�¶"µ�´�¨�¬·£�¦K©�©¹¸�¨º¡�¢�¨�»�¦�¼K¨&½¹£�¦�´�±¾´�£"�À¿�¿
>�),'&$
>�8�)�*,+")&-,.&-�/�:�4�2�/�.6*���;�),2�/�-"$�*K. e ��Á�Â�Â�8�)�*,+")�-,.�-�/
:�4�2�/".6*���g
8�)�*,+")&-,.&-�/�:�4�25/".6*�0VIKO�-�<[Wz>&),'�$
>&8�)�*�+,)�-".�-�/":�4�2�/�.�*�Z6�G8�)6*"+,)�-,.5-�/�:&4�2�/".�*��&\�g
�
�QÃ[��Ä�¨
¸
¦�¤�½n´6±�¨¥Å���¬&¡M�5¤K¨�¤�´�Æ�¶"µ�´�¨�¬�¤�«G¬�¨Q´&��´6±�¦�µ·ª���¬&¡���¤K¨�¤�´��
8�)�*,+")&-,.&-�/�:�4�25/".6*�0N?�.�IKO6-"<MW���8
)6*,+,)5-,.�-
/�:�4�26/".6*M��ZN-,$�*K.,\�g

20

�����������
	������������� rD	��� x���~����������r��,���K�������
�&�,����r}t� �,��, ��K������t

�
�·Ç���È�¦�¤�½¥«¥µ& K¦�´&«"¸�©�¨³¤�«�¬�¨�»��&¢¾´�±�¦�µ·ª���¬�¡M��¤K¨�¤K´
8�)�*,+")&-,.&-�/�:�4�25/".6*�0VIKO�-�<[WA;�),2�/�-"$�*K. e ��Á&8
)�*,+�)&-".�-�/�:�4,25/�.6*��KZ9-�$�*�.,\�g
�
�}ÉD�¹Å�¢�¨�«,´�¨À«Ê©�¦�µ�´�¨�¤�ª���¬�¡M��¤K¨�¤K´
>,O�25/�.&-,.�?��&-,.&j p)�?
/"$�>&�O�25/".�-,.�?]W�/&;�O�2
\�g
�
��Ë���Ì�¤
¤���
¤�ª
¨}´�±�¦5µ�ª&��¬&¡M��¤�¨�¤�´À¦�¤�´�±�¨À¢�¨G²�¦�µ�´�¢�¶
®"$�*�O�-�L10N?".�I�O6-"<[W9;,),2�/�-"$�*K.MZC>"O�2�/".&-�.�?�\�g
h

Step 0 takes care of creating a global unique identifier by taking the machine
name and some free port to which we can bind; Step 1 bind a new name for
the original component system; Step 2 rebinds the ’ComponentSystem’ name to
the Portal, such that all creation messages are sent to the Portal; Step 3 binds a
global component system name for the portal, such that remote components can
refer easily to this component system; Step 4 creates a java RMI listener which
will accept all incoming connections and put them immediately in the component
systems queue; Step 5 announces this component system to the name server.

Creating new Components

We have initialised a new, better, component system. Now we need the ability
to find other components. This means that all components created in the system
needs a global unique name. This can only achieved by overriding the Create-
Component method. The new method will prefix the machine name to every
instance. Eg. If component A asks an instantiation of blueprint T, with instance
name t, the portal will create an instance cubical:2039/t. The portal does this as
follows:

*K."2
2&$�L".�8�?".
$�/".�8�)�*,+,)�-,.&-�/]W�\
c
'&)&+�4��KO�.�>�<,2�W�\�g
^,b -K2�/"$&-K'&.]@V;,),25/�-,$�*�. e �5Á�� e ^"b -�25/"$5-K'�.
a¹aMg
B�)�?�j"$�?�<�|"."2
2&$�L".MWz>�)"'�$
>�8�)�*,+")�-".&-�/
:�4�2�/�.�*�\�g
h

The code speaks for itself. First we copy all fields (this also includes fields which
will be passed to the Init method). Afterwards we prefix the instance name with
the machine name. And finally we forward this adapted message to the original
component system.

Finding and Referring other Component Systems

Setting up a connection with another component system can be done by calling
the Portal with a ConnectWith call. We thought of making connections automati-
cally, but it turned out that setting up connections is part of error recovery which
cannot be implemented, without domain knowledge. So, initiating a connection is
left to the user of the Portal.

21

�����������
	������������� rD	��� x���~����������r��,���K�������
�&�,����r}t� �,��, ��K������t

*K."2
2&$�L".�8
)&-
-,.,'�/ q O�/�;]W�\
c
�
�����¹¦z»�£�¨¹±,«5ÍK¨Q´&�·ª&��¤
¤K¨
ª
´}´&�¥�� �¢�µ�¨�©CÍK¨�µÀ£�¨¥½
�5¤�ÎC´o½
�Q«�¤
¶�´6±�¦�¤�²
O5BÏWA;,),25/�-,$�*K.D03'&)�*,+,$&?�.��")�W ^ :&/�?KO6-�L7f d <�<�?,a�\5���
H�\�?".�/�=�?�-Rg
�
��¯���«&µ
��´�±�¨o¢5¬�¦5¢�¨G²�¦�µ�´�¢�¶³»���¢�«}µ�´6 K¸
p)�?
/�$�> b -�/�.�?�B�$,'�.�+,)&?
/"$�>���W p)�?
/�$�> b -
/�.�?�B�$,'�.,\�®�$�*�O6-
LR0�>�)
)���=�+]W ^ :�/�?KO�-
L7f d <�<�?"a"\�g
�
�QÃ[��¢�¨�¬�¨�¬�¸�¨5¢·´�±�¨oµ�´� K¸�»��&¢�´�±�¨³²�¦�ÍK¨6¤(«
½
½&¢�¨5µ
µ
+,)�?
/�$�>"2�0V+�=�/]W ^ d <
<�?"aMZN+,)�?�/"$
>"\�g
h

Step 0 checks whether we are not connecting to ourselves. If that is the case we
simply ignore the request; Step 1 looks up the target address; Step 2 remembers
the received stub for that address with the name of that address.

Passing through all outbound messages

Everything is in place. We have overridden the component system, we create
components with a new name, we can connect with other component systems,
now we need to change the meta communication protocol used between compo-
nents. We will do this by overriding the Undeliverable messages. All messages
which are not deliverable will be passed to the component system, since the por-
tal is the new component system, it will receive these Undeliverable messages.

*K."2
2&$�L".¹Ð
-"<�.�>,O6%".�?"$&I,>�.�W�\
c
�
�����Q©G�
���� 6¡�´�±�¨Q´&«&¢&²�¨�´o«
½
½&¢�¨�µ
µ¥��»�´�±�¨¹
¤�½�¨K©�¦�ÍK¨�¢,«"¸K©�¨
|".,2
2�$�L".�*�� ^ |".,2
2&$&L".�fT|"."2
2&$&L�.
a�g
:�/
?KO�-�L¥/"$�?
L".&/��[WC:�/�?KO6-�LK\C*�0VL�.&/
�KO�.�>&<�W6���"$�?
L�.&/��&\�g
:�/
?KO�-�Lo*K$,'�;�O�-,.���/"$&?
L".�/10�2�=�I�2�/
?KOG-�L[W3H�ZA/"$�?
L�.&/10CO6-
<�.&S i B�W��6Á��&\�\�g
�
��¯��¹¦5µ�´�±�¨5¢�¨À«�¡M�&¢K´&«�©Ñ»��&¢�´�±�¦�µ}��¦6¤�½¥��»n¬�¨�µ
µ"«�²�¨�µKÒ
�
� £�¨³»���¢
£,«&¢,½¥´�±�¨�¬�¨�µ
µ"«6²�¨}´&�(¦�´�Òo�,´�±�¨5¢
£�¦�µ,¨
�
� £�¨º¡M«&µ
µ·¦�´¥´&��´6±�¨��&¢�¦�²�¦6¤�«�©³ª��G¬&¡M��¤K¨6¤�´�µ�¶"µ�´�¨�¬
p)�?
/�$�> b -�/�.�?�B�$,'�.�+,)&?
/"$�>���W p)�?
/�$�> b -
/�.�?�B�$,'�.,\6+")�?�/"$
>�2�0VL".�/]W`*�$,'6;�OG-,.,\�g
O5BÏWA+,)�?
/�$�>��
��-�=�>
>,\
c
^ |�.,2
2&$�L�.D@Ó*�a�g
B�)&?�j,$�?�<�|".,2
2&$&L".�WC>�)"'&$�>�8�)6*"+")&-,.5-�/�:&4�25/".�*�\�g
h

.�>"2&.
+,)&?
/"$�>]0CO6-K'&)�*�O6-�L�|�."2
2&$�L".MW`*�\�g

h

Passing unhandled messages through to the component system

A last thing we need to do is to pass all unhandled message through to the com-
ponent system. We could do this by rewriting them and forwarding everything,
but this is a bit too complicated and absolutely not good. It is not good because
another new component system may add extra messages (like for example the

22

�����������
	������������� rD	��� x���~����������r��,���K�������
�&�,����r}t� �,��, ��K������t

Meta
CS

Meta/Object
Portal

Object
A

sendMessageFrom("A",<M>)

lookup sendproxy("A")

receiveMessage(<M>)

lookup receiveproxy("B")

sendMessageFrom("ComponentSystem",<U>)

lookup sendproxy("ComponentSystem")

receiveMessage(<U>)

lookup receiveproxy("ComponentSystem") receiveMessage(<U>)

incomingMessage(<M>)

Figure 4.1: MSC illustrating how a message is forwarded through the portal. The Message
<U> means undeliverable and wraps message <M>.

portal with its ConnectWith message) which we could not foresee. Therefore we
will change the ReceiveMessage a bit. (ReceiveMessage is called whenever a
component receives a message, but doesn’t have a method to handle it)

*K."2
2&$�L".À��.,'&.�O�%�.�|".,2
2�$�L".�W�\
c
|".,2
2�$�L".�*�� ^ |".,2
2&$&L".�fT|"."2
2&$&L�.
a�g
*�0V+
=
/
�KO�.�>&<[W����"$&?
L".&/��KZC>�)�'&$
>&8
)�*,+�)&-".�-
/":�4,25/�.6*�\�g
2&.&-"<�|".,2
2&$&L".�WV*�\�g
h

An Example

We will now illustrate what happens whenever the portal sends something through
to another system. Let’s say component A has to send message a message M to
component B. Component B is on another machine, so message sending will go
trough the portals. The msc can be seen in figure 4.1 and 4.2.

23

�����������
	������������� rD	��� x���~����������r��,���K�������
�&�,����r}t� �,��, ��K������t

Meta
CS

Meta/Object
Portal

Object
B

incomingMessage(<M>)

sendMessageFrom("Portal",<M>)

lookup sendproxy("Portal")

receiveMessage(<M>)

lookup receiveproxy("B") receiveMessage(<M>)

Figure 4.2: MSC illustrating how an incoming message is handled.

The Infrastructure port to The Portal (0<=noi<=1)

The component system has a number of ports. If we want to use the portal com-
ponent system, we might need an extra infrastructure port. This port notifies all
connected components if something happens in the component infrastructure.
The component infrastructure is the connection of a number of component sys-
tems.

out ComponentSystemConnect(ComponentSystem:<String>) All component
systems will send out this message when a new component sys-
tem connects somewhere to the component infrastructure. Compo-
nentSystem is the name of the component system connected. It is
a Java String and can be used as a reference to send messages to
that component system.

in Connect(P or t:<String>, With:<String>) If a component system receives a
connect message on the infrastructure port. It knows that there is a
new component system joining. It will immediately send out the con-
tent of the infrastructure port, send out a ComponentSystemConnect
over the infrastructure port and finally update the infrastructure port.

in Disconnect(P or t:<String>, With:<String>) If a disconnect is received on the
Infrastructure port, we will send a ComponentSystemDisconnect to
the current port and remove the component system from the port.

out ComponentSystemDisconnect(ComponentSystem:<String>) All compo-
nent systems in a component infrastructure will send out this mes-
sage whenever a component system disconnects. The component
infrastructure is the interconnection of different component systems.

24

�����������
	������������� rD	��� x���~����������r��,���K�������
�&�,����r}t� �,��, ��K������t

The argument ComponentSystem contains the name of the discon-
nected component system. It is a Java String.

out ComponentSystemF ailed(ComponentSystem:<String>) All component sys-
tems in a component infrastructure will send out this message when-
ever a component system disconnects because the network fails.
The argument ComponentSystem contains the name of the discon-
nected component system. It is a Java String.

out ComponentConnect(Component:<String>) All component systems sends
out this message whenever a new component has been created.

out ComponentDisconnect(Component:<String>) All component systems sends
out this message whenever a new component is disconnected from
the system.

out ComponentF ail(Component:<String>, Reason:<String>) All component sys-
tems sends out this message whenever a component fails and crashes.

out ComponentSystemQueueOverflo w(ComponentSystem:<String>) Is send
out by a component system to notify of Queue Overflows. This
shouldn’t happen in the component system if programmed and used
correct. It nevertheless is easy to do. Suppose we have a pro-
ducer which produces images at 50 Hz, suppose we have a con-
sumer which consumes images at 25 Hz, in this case and because a
sendMessage never waits, the receiving Queues will grow and even-
tually overflow.

in AreYouAlive () Sender of this message asks whether this component system
is alive or not. If it is alive it should send back an Alive message.

out Alive (Who) is send in response to an incoming AreYouAlife request.

in RequestComponentList() The sender request a complete list of all the com-
ponents running in the system.

out_ComponentList(ComponentList:<String[]>) Is send out in response to a
RequestComponentList.

4.4. Error Handling, 2nd Round: The Contr oller

Now, back to error handling. Error handling is application dependent and envi-
ronment dependent. We aim at systems with a good working TCP/IP network
(and TCP/IP stack). Failures which can arise consists of switching of a camera,
switching of the network (a router for example) or failure of the central storage. In
any case, the application may want to act differently. The controller is the instan-
tiation which will keep track of component systems which should be connected.
If something goes wrong, the controller will either queue outgoing messages (if
they are important) or throw them away.

Furthermore, the controller will try to set up a connection again as soon as pos-
sible. The relevant tasks of the controller are described as follows:

25

�����������
	������������� rD	��� x���~����������r��,���K�������
�&�,����r}t� �,��, ��K������t

ComponentSystem
alfa

ComponentSystem
beta

Connect(Port:“Infrastructure”, With:“beta”)

ComponentSystemConnect(ComponentSystem:“alfa”)
ComponentSystem

gamma
Connect(Port:“Infrastructure”, With: “gamma”)

ComponentSystemConnect(ComponentSystem:“alfa”)

ComponentSystemConnect(ComponentSystem:“beta”)

ComponentSystemConnect(ComponentSystem:“gamma”)
ComponentSystem

delta
Connection(Port:“Infrastructure”, With: “delta”)

ComponentSystemConnect(ComponentSystem:“alfa”)

ComponentSystemConnect(ComponentSystem:“beta”)

ComponentSystemConnect(ComponentSystem:“gamma”)

ComponentSystemConnect(ComponentSystem:“delta”)

ComponentSystemConnect(ComponentSystem:“delta”)

Figure 4.3: Connecting multiple component systems with each other

26

�����������
	������������� rD	��� x���~����������r��,���K�������
�&�,����r}t� �,��, ��K������t

ComponentSystem
alfa

ComponentSystem
beta

ComponentSystem
gamma

ComponentSystem
delta

Disconnect(Port:“Infrastructure”, With:“beta”)

ComponentSystemDisconnect(ComponentSystem:“beta”)

ComponentSystemDisconnect(ComponentSystem:“beta”)

ComponentSystemDisconnect(ComponentSystem:“beta”)

Disconnect(Port:“Infrastructure”, With:“gamma”)

ComponentSystemDisconnect(ComponentSystem:“beta”)

ComponentSystemDisconnect(ComponentSystem:“beta”)

Disconnect(Port:“Infrastructure”, With:“delta”)

ComponentSystemDisconnect(ComponentSystem:“beta”)

Figure 4.4: Disconnecting a component system

27

�����������
	������������� rD	��� x���~����������r��,���K�������
�&�,����r}t� �,��, ��K������t

m Components can subscribe themselves to receive notification of connection
and disconnection of components

m If new components connect or reconnect, all interested components will be
notified.

m If components die or disconnect, the interested components will be notified.

Component Join & Disjoin

Components can subscribe themselves to retrieve notification of certain new com-
ponents within the system. For example, a user interface component would like
to subscribe to new cameras. The user interface component will receive from the
controller a connect message when a new camera joins (or is created).

Disconnecting component can be initiated from anywhere. Every delete com-
mand must be send to the controller, which will ask all components to disconnect
themselves. If they don’t the controller will take action. We will now illustrate
connecting and disconnecting

Component System Disconnection

At the moment a component disconnects because there was an error (crash in
the component) or a network failure, all dependent components will be notified
with a HasDisjoined message. The messages which trigger such an action are

m ComponentSystemDisconnect

m ComponentSystemFailed

m ComponentFail

m ComponentDisconnected

These messages are sent by the Portal normally. (not yet documented)

port ComponentSystem (noi=1)

in ComponentSystemDisconnect(ComponentSystem) see description of the
ComponentSystem component

in ComponentSystemF ailed(ComponentSystem) see description of the Com-
ponentSystem component

in ComponentSystemConnect(ComponentSystem) see description of the Com-
ponentSystem component

in ComponentSystemQueueOverflo w(ComponentSystem, Reason) see de-
scription of the ComponentSystem component

28

�����������
	������������� rD	��� x���~����������r��,���K�������
�&�,����r}t� �,��, ��K������t

in ComponentDisconnect(Component) see description of the ComponentSys-
tem component

in ComponentConnect(Component) see description of the ComponentSystem
component

in ComponentF ailed(Component) see description of the ComponentSystem com-
ponent

out CreateComponent(BluePrint, Name) is used to create all the necesarry
components

multiport Controller (noi=1)

in LookingFor (NameSubstring) Requests the controller to look for components
with a name which contains the substring Name. In
response to this message, the controller will send
back all existing components and will from then on
notify the requester of new components matching
the given name.

out HasJoined(Who) is send to notify everybody that Who has joined.
This message is only send to all people subscribed
to the given Name substring.

out HasDisjoined(Who) is send as a notification of a disjoin. Is send only to
subscribes components.

out Alif e(Who) is send out to check whether other component sys-
tems are still alive.

in AreYouAlif e() response of previous message

4.5. Why we didn’t use Jini

The problems and solutions described in this deliverable, especially regarding
distribution issues resembles Java Jini [Edw99]. Nevertheless we don’t want to
use Jini because it has started wrong. Jini uses Java (and Java RMI) as a pro-
gramming paradigm for distributed systems. This is a wrong starting point and
makes life hard. We will illustrate this point in the next subsections.

An example piece of Asynchronous Java code: Learn to Listen.

In distributed systems, everything works asynchronously. Nothing works at the
same time or rate. There are moments that services need to wait for each other,
and there are times things run really concurrently. The amount of time things
run synchronous compared to the amount of time where things run concurrently
is very small. As such, using a synchronous programming paradigm (like object

29

�����������
	������������� rD	��� x���~����������r��,���K�������
�&�,����r}t� �,��, ��K������t

orientation and Java RMI) is not suitable. We can easily illustrate this with a
simple peace of listen code. Suppose we send a message to some remote stub
and want to say: ’if you are done calculating, please send me a message back’.
If you want to say something like that you start writing code like:

'�>�$,2
2¹�"$,'5/�)�?KO�$�>&�O�25/".�-".�?
.�S
/".�-"<�2³Ð�-�O�'&$,25/
��.�*K)�/". i I,#�."'�/
O�*,+�>�.�*K.&-�/�2��"$,'5/�)�?KO�$�>�Ô")&-,.��O�25/".5-,.&?
c
+
=
I�>"O�'¹�"$,'5/")&?KO�$�>��O�25/".&-�.�?[WG\º/�;�?")&jK2J��.�*K)�/".&�
S�'&.&+
/KO�)&-
+
=
I�>"O�'¹�"$,'5/")&?KO�$�>&Ô�)&-,.�W�\�/�;
?")&jK2J�".6*K)�/".���S�'&.&+�/�O�)&-
c 0
0Õ)�%".�?
?�O5<�.o/�;KO�2QO5B}4")&=Qj,$&-�/Ö0
0�0
h

h

Now, aside from the fact that we need to 1) write a separate class for this, 2)
generate stub & skeleton code and 3) that we have to write a separate interface
for this, there is still the problem of synchronity. In this example, the server just
wanted to notify us with the result of the calculation. Alas, the server cannot work
further as long as we don’t finish our FactorialDone method. We can solve this by
using some threads which notify each other and so on and so on... but I think the
main point has been made. Programming asynchronous in Java is difficult.

A “simple” example of Jini Code: 3 pages ’Hello world’.

Now, using the same kind of argumentation, I will illustrate how some application
can become a client of some Jini service. Like all other examples in this text i have
omitted useless try/catch clauses. The example below is taken from [Edw99]

+
=�I�>,O�'}'�>�$,2
2¹U".�>
>�) q)�?,>&<
8">,O�.�-
/ q O�/�;
��%�.&-�/,2�.�S
/".&-�<�2JU".�>
>�) q)�?,>&<
8">,O�.�-�/
c
+�?")�/�.,'5/".�<ÀB�O6-,$�>(O6-
/n�� d :��,Â�� b |
�À�ÊF�H·×�l
H�×·F�H
H�H[g
�
�}Ì"¤Ø¦6¤
¤K¨5¢·ªK©G«�µ
µ�´&�Ê©�¦�µ�´�¨6¤¹»��&¢�¨�ÍK¨�¤K´5µM�
'�>�$,2�2o|�4
�
%".&-
/��O�25/�.&-,.�?
.�S�/".&-"<�2�Ð�-�O�'&$"25/
�".�*�)�/". i I"#�.,'5/
O�*"+�>�.�*K.�-�/�2³��.�*K)�/".&�
%".&-�/
�O�25/".5-,.&?
c
+
=�I�>,O�'J|
4��
%".&-�/
�O�25/".�-,.�?[WG\º/�;�?")&jK2J��.�*K)�/".&�
S�'&.&+
/KO�)&- c
h
�
�¾Å�«�©
©�¨�½o£
±�¨�¤·«�¤Ø¨6ÍK¨�¤�´�¦�µ¥¢�¨
ª�¨
¦�ÍK¨�½��
+
=�I�>,O�'J%"),O5<�-,)�/KO5B�4]W��".�*�)�/".��
%
.&-
/o.�%�\o/�;
?")&jK2Ù0
0�0
c
:�4�25/�.�*�0A)&=
/10V+�?KO�-
/,>�-[W���Ú
)&/À$&-(.�%".&-�/QB�?�)�*�@�� e .�%10VL".�/":
)�=�?�'&.�WG\
\�g
O5BÏWC.�%¾O6-K25/�$&-K'&.
)�B�:
.�?�%KO�'&.���%".&-�/K\
c
:�.�?
%KO�'�.��
%".&-
/Q2&.&%(�ÏWC:
.�?�%KO�'&.���%".&-�/K\�.�%Dg
:�.�?
%KO�'�. b /".�*¾O�/".�*���2&.�%10VL".�/":
.&?
%KO�'&. b /�.�*RW�\�g

30

�����������
	������������� rD	��� x���~����������r��,���K�������
�&�,����r}t� �,��, ��K������t

U�.�>
>�) q)�?,>�<�:�.�?
%KO�'5. b -
/�.�?�B�$,'�.�;
j�2�g
;�jK2o��W�U�.�>
>�) q)�?,>�<�:�.�?
%KO�'5. b -
/�.�?�B�$,'�.,\¹O6/".�*�0C2�.�?
%KO�'�.[g
:&4�25/".�*70A)&=�/10`+�?KO6-�/�>�-]W6��Ú�)�/o$¹*K$�/�'6;�O6-�L(2�.�?
%KO�'�.D0G��\�g
:&4�25/".�*70A)&=�/10`+�?KO6-�/�>�-]W6� b /DÛC2Ü*K.,2
2&$&L".(O�2�@�� e ;
jK2M0NL".�/
|�.,2
2&$�L�.�WG\
\�g
h

h
h

+�?")�/�.,'5/".�<o|
4
�
%".�-�/��O�2�/".&-,.�?o.�%�.&-�/�8�$&/�'�;,.�?]g
�
�nÆ,«�¬�¨�«�µQµ� 6¡[¨�¢�ªK©�«�µ�µKÒ���¤M©C¶¾ª5¢�¨�«,´�¨À«�¤¾¨�ÍK¨�¤�´�©�¦5µ�´�¨�¤K¨�¢
+
=
I�>"O�'¹U".�>
>�) q)�?,>�<�8">,O�.&-�/ q O6/�;��
%
.&-
/�2�W�\�/�;�?�)&jK2Ù0
0
0
c
.�%�.&-�/�8�$&/�'�;,.�?o�}-,.&jn|
4
�
%".�-�/��O�2�/".&-,.�?�W�\�g
h

+�?")�/�.,'5/".�< i I,#
.,'�/n>�)
)��
��)�?":
.�?�%KO�'&.�W3:�.�?
%�O�'�.&�".&LKO&25/�?�$�?À>�=�\
c
i I"#
.,'5/Q)¥�¾26=
+,.�?10A>�)
)��
��)�?":
.�?�%KO�'�.MWz>�=�\�g
O5BÝWC)Ö�9�}-
=�>
>"\�?".�/�=�?�-n)[g
.�>�2&.�?".�LKO�2�/".�?
�")&?
�
%".&-�/�2�WC>5=�\�g
h

h
�
�}Ì�µ
�¹»��&¢�¨�ÍK¨�¤K´5µ�»�¢,��¬Ù´�±�¨�©G�
���� 6¡Øµ,¨5¢�ÍK¦
ª�¨
+�?")�/�.,'5/".�<o%")�O5<}?".�L�O�25/".�?��")�?
�
%�.&-�/�2�W3:
.�?�%KO�'�.���.�L�O�2�/�?"$&?À>�=�\¹/�;�?�)&jK2Ù0
0
0
c
>�=10V-,)�/KO�B�4]W�/".6*,+�>�$&/�.[Z
:
.�?
%�O�'&.��".&LKO�25/
?�$&?10N��� d ®�: b � b i ®"Â�® i | d ��8�U"Â&| d ��8�U]Z
.�%".&-
/�8�$�/�'6;,.�?DZÞ-
=�>
>MZÜ�� d :��"Â&� b |
��\�g

h
�
�nÆK´&«&¢K´¥´�±�¨Qª�©�¦
¨�¤�´��
+
=
I�>"O�'¥25/"$�/KO�'J%")�O5<J*K$,O6-DWC:�/�?KO6-�L�$�?
L�2[ßVà�\
c
U".
>
>�) q)&?,>�<
8">"O�.&-
/ q O�/�;��
%�.�-
/�2�;
jK'o�¥-,.&jQU".�>
>�) q)�?,>&<
8">,O�.�-�/ q O�/�;
��%".�-�/,2�WG\�g
-,.�jn��;�?".
$�<�WA;
jK'�\�0C25/"$�?�/]WG\�g
h

h

It is clear that we cannot take the time to write every component this way. Es-
pecially because there is even no announcement of ourselves in this rather long
example. If we want to offer a service we have to do it as follows (example and
text below taken from [Edw99])

�
�����Õá,¢,��¼�¶(�"¸�â�¨
ª
´o½
�&£�¤�©G�
«
½"¨�½}¸�¶¾ªK©�¦
¨�¤K´5µ
'�>�$,2
2¹U".�>
>�) q)�?,>&<�:
.�?
%�O�'&. p ?")&S�4QOz*,+�>�.�*�.&-�/�2�:
.�?KO�$
>,O5ã�$&I,>�.[Z�U".�>
>�) q)�?,>�<
:
.�?
%KO�'&. b -�/".�?�B
c
+
=
I�>"O�'¹U".�>
>�) q)�?,>�<
:
.�?
%KO&'&. p ?�)�S
4�W�\
c
h

+
=
I�>"O�'À:�/
?KO6-
L}L".�/
|"."2
2&$�L".MW�\
c

31

�����������
	������������� rD	��� x���~����������r��,���K�������
�&�,����r}t� �,��, ��K������t

?".&/�=�?�-Ø��U�.�>
>�)[Zäj,)�?,>�<D�G��g
h

h
�
��¯��Õá" K¸K©6¦�µ�±�¦�¤&²¾´�±�¨oµ�¨�¢�ÍK¦
ª
¨
+
=�I�>,O�'}'�>�$,2
2¹U".�>
>�) q)�?,>&<�:
.�?
%�O�'&.�O�*,+,>�.�*K.&-
/�2���=
-�-,$&I�>�.
c
+�?")�/�.,'5/".�<ÀB�O6-,$�>(O6-
/n�� d :��,Â�� b |
�À�ÊF�H·×�l
H�×·F�H
H�H[g
+�?")�/�.,'5/".�<oU"$,2�;�/�$&I�>�.o?�.�LKO�25/�?"$�/KO�)�-K2³�}-,.&jnU"$,26;�/"$&I�>�.�W�\�g
+�?")�/�.,'5/".�<�:
.�?
%KO�'&. b /".6*�O�/".6*�g
+�?")�/�.,'5/".�<À�)
)���=�+�ÔKO�2
'�)�%".�?
4¹<�O�2
'&)[g
�
�QÃ[��å&¤
¤K¨5¢·ªK©G«�µ
µ�´&�Ê©�¦�µ�´�¨6¤¹»��&¢(½"¦�µ�ª&��ÍK¨5¢�¶(¨�ÍK¨�¤�´�µ
'�>�$,2�2À�O�25/".&-".�?·O�*,+,>�.�*K.&-
/�2³ÔKO�2
'&)�%".&?
4��O�2�/".&-,.�?
c
+
=�I�>,O�'J%"),O5<¥<�O�2
'&)&%".�?".�<�W�ÔKO�2
'5)�%�.&?�4
�
%
.&-
/À.�%K\
c
:�4�25/�.�*�0A)&=
/10V+�?KO�-
/,>�-[W���<�O�2
'&)�%".&?�.�<o$(>�)�)���=
+�2&.&?
%KO�'&.]�G��\�g
:
.�?
%�O�'&.��".&LKO�25/
?�$&?�ßNà³-,.�j�?".�L�2��(.�%R0NL".�/
��.�LKO�25/�?"$�?�2�W�\�g
B�)�?ÏW�O6-
/�O���HÝg�O ^ -,.&j�?".&L�2�0�>�.�-�L
/�;æg³O e
e \
c
O�B�W,�V?".�LKO�2�/
?"$�/KO5)&-K2M03'�)&-�/
$�O�-�2�ç".�4�WA-".�j�?�.�L,2[ß3O�à�\�\
?".�L�O�25/".�? q O�/�;"
)
)���=�+]WA-,.5j�?�.&L�2[ßCO6à�\�g

h
h

+
=�I�>,O�'J%"),O5<¥<�O�2
'&$&?�<�.�<[WAÔKO�2
'&)�%".&?�4��
%".5-�/o.�%K\
c
:
.�?
%�O�'&.��".&LKO�25/
?�$&?�ßNàJ<�.�$�<�?".�L�2J�(.&%10NL".�/��".�LKO�2�/
?"$�?�2�W�\�g
B�)�?ÏW�O6-
/�O���HÝg�O ^ <�.
$�<�?�.�L�2�0�>�.&-�L
/�;æg³O e
e \
?�.�LKO�25/�?"$�/KO�)�-K2�0N?".�*K)&%�.MW3<�.�$�<�?�.&L�2[ß�O5à�\�g

h
h

�
�·Ç���Ì�ª�´6 �«�©�¡K K¸K©�¦�µ�±�¦�¤�²
+
=
I�>"O�'¹U".�>
>�) q)�?,>�<
:
.�?
%KO&'&.MWG\º/�;�?")&jK2 b i �
S�'&.�+�/KO�)&-
c
O�/�.�*��¥-,.�j·:�.�?
%KO�'�. b /".�*1WA-
=�>
>�Z~'5?".
$�/�. p ?")�S�4]W�\�ZÞ-
=�>
>"\�g
:�4�25/".�*�032&.�/":
."'�=�?�O6/�4
|"$5-,$&L�.&?]WA-�.&j¹�
| b :�.,'�=�?KO6/
4
|"$&-"$�L�.�?�W�\�\�g
<�O�2
'&)��}-,.&j(�)
)���=�+�ÔKO�2
'�)�%".�?
4�WA-".�j�:&/
?KO6-�L1ßNà c �
� h \�g
<�O�2
'&)D0A$�<
<�ÔKO�2�'&)�%�.&?�4��O&25/�.�-".�?]WN-,.�jo�O�25/".&-,.&?]W�\
\�g
h

+�?")�/�.,'5/".�<oU".�>
>�) q)�?,>�<
:
.�?
%KO�'�. b -�/".&?
B
$,'&.À'5?�.
$�/". p ?")�S
4]WG\
c
?".&/�=�?�-}-,.�jnU�.�>
>�) q)�?,>�<�:�.�?
%KO�'5. p ?�)&S
4]W�\�g
h

�
�}ÉD��Ä�¨�²�¦�µ�´�¨5¢Q�� �¢
µ�¨K©CÍK¨5µ
+�?")�/�.,'5/".�<Q254�-K'�;
?")&-�O5ã
.�<o%"),O5<}?".�LKO�2�/".�? q O6/�;"�)
)���=�+]WC:�.�?�%KO�'�.���.�L�O�2�/�?"$&?J?".�L�O�25/
?"$&?K\
c
:
.&?
%KO�'&.&�".�LKO�2�/
?"$&/�O5)&-¹?".�L�O�25/
?"$&/KO�)&-��¥-
=,>
>�g
?".&LKO�25/
?�$�/KO�)&-À�¥?".�LKO�2�/
?"$�?10V?".�LKO�2�/�.�?]W�O�/�.6*�Z��� d :��"Â&� b |
��\�g

32

�����������
	������������� rD	��� x���~����������r��,���K�������
�&�,����r}t� �,��, ��K������t

O5BÝW�O6/".�*�0C2�.�?
%KO�'�. b Ôo�
��-
=�>
>,\
c
O�/".�*70C2&.�?
%�O�'&. b Ô¹�Q?".�LKO�2�/
?"$�/KO5)&-�0NL".�/":�.&?
%�O�'5. b Ô[W�\�g
:�4�25/�.�*�0A)&=
/10V+�?KO�-
/,>�-[W��6:�.&/¥2&.�?
%KO�'&. b Ôo/")Ø� e O�/".�*�032&.�?
%KO�'&. b ÔK\�g
h

?".&LKO�25/
?�$�/KO�)&-�2�0V+�=
/[W�?".�LKO�2�/�?"$�?[ZÞ?".�LKO�2�/
?"$�/KO5)&-�\�g
h

+
=
I�>"O�'¹%")�O5<�?�=�-DW�\
c
j
;KO&>�.ÙW�/
?�=,.�\���;�?�.
$�<R0C2&>�.
.&+DW6F�H
H�H�H�H
H�\�g
h

+
=
I�>"O�'¥25/"$�/KO�'J%")�O5<J*K$,O6-DWC:�/�?KO6-�L�$�?
L�2[ßVà�\
c
U".
>
>�) q)&?,>�<�:
.&?
%KO�'�.³;�jK2o�¥-,.�j(U".
>
>�) q)&?,>�<�:
.&?
%KO�'�.�WG\�g
-,.�jn��;�?".
$�<�WA;
jK2�\�0C25/"$�?�/]WG\�g
h

h

Piece 0 is the proxy object that will be downloaded by clients. It’s serializable and
implements our well-known HelloWorldServiceInterface; Piece 1 (HelloWorldSer-
vice) is the "wrapper" class that handles publishing the service item; Piece 2 is
the Inner class to listen for discovery events. Discarded is called ONLY when
we explicitly discard a lookup service, not "automatically" when a lookup service
goes down. Once discovered, there is NO ongoing communication with a lookup
service. Piece 3 is the code which actually initiates the publishing of a service.
It sets a security manager, searches for the "public" group, which by convention
is named by the empty string and Installs a listener. Piece 4 sends a registration
request to the Jini services whenever a discovery event has been received. This
work involves remote calls, and may take a while to complete. Thus, since it’s
called from discovered(), it will prevent us from responding in a timely fashion to
new discovery events. An improvement would be to spin off a separate short-lived
thread to do the work. The thread does nothing but sleep, but it makes sure the
VM doesn’t exit.

Q.E.D

33

5. Conc lusion

In this deliverable we have explained the work we’ve done to refine the compo-
nent architecture. We have largely enhanced the meta communication protocol
used in the component system, and we have illustrated the use of Meta level pro-
gramming in distributed environments by making the component distributed. We
have done this by writing a Portal component and absorb this into the component
system.

At the end of the text we have made a provocative point: Java is not suited for
programming distributed systems. We have argued that asynchronous message
passing is what you want in a distributed system and showed that this is quite
hard to implement in Java.

34

Bib liograph y

[BU00] Werner Van Belle and David Urting. The component system. Oktober
2000.

[BVD99] Werner Van Belle, Karsten Verelst, and Theo D’Hondt. Location
transparant routing in mobile agent systems merging name lookups
with routing. December ’99.

[Edw99] W. Keith Edwards. Core Jini. The Sun Microsystems Press Java Se-
ries. Prentice Hall PTR, Upper Saddle Rive, NJ 07458, 1999.

[RH90] Michel Raynal and Jean-Michel Helray. Synchronization and Control
of Distributed Systems and Programs. John Wiley and Sons, 1990.

[RJM { 98] Bert Robben, Wouter Joosen, Frank Matthijs, Bart Vanhaute, and
Pierre Verbaeten. Building a meta-level architecture for distributed ap-
plications. May 1998.

[Wol89] De Meuter Wolfgang. The story of the simplest mop in the world -
or- the scheme of object-orientation. Prototype Based Programming,
1989.

35

