[W]

STWW-Programma

SEESCOA:
Software Engineering for Embedded Systems using a
Component-Oriented Approach

The Component System

Deliverable D3.3b

Sﬁqtﬂs”ﬂr@% P -
¢ [% AEES i

NIVERSITAIR UNIVERSITEIT
CENTRUM ENT

: o]
,’% -
uv N Vﬂvcea‘é‘(‘# IN HET CENTRUM VAN DE KENNIS

SEESCOA PROJECT THE COMPONENT SYSTEM

INTRODUCTION.........cosurererecssmssssssssesessssssssssssssssessssssssssssssssssssssssssssssssssssas ssasssssssessasssssssssasssssensssneas 4
COMPONENTS AND THE COMPONENT SYSTEM........ccconrmmmmmsmmmmmsmsssmssssssmssssssssssssssssssssssssssssssssesens 5
EVENTS VS THREADS..........ccoommmnmmmmmssssssesssssssssssssmsssassssssssasssssassssssssas 8
Thread Based Models 8
Event Based Models 9
WRITING COMPONENTS.......coosmusermmsmsssasssass 1
Naming Components 12
Define it as a Component: The componentclass keyword 13
USING the RUNIIME.couiiiiiiiiecieete ettt sttt st et e st e e s bt e st e ebeesabeesatesateesaseenbeesasaesaseense 13
USING the PrECOMPIIET.c..eeiuiitieiie ittt ettt et b e bbbt et e st e b e e nbeeabeeaeesaeas 14
Handling Incoming Messages: The message keyword 14
USING The RUNIITIC. ...ttt ettt ettt ettt et e et et e bt e bt eatesate st esbeeneesaeeeneesaeenseeneeans 15
USING The PrECOMPILET..........eeruieiiiiiieeieeiieeite sttt sttt ettt st et e e bt e st e e sate e beesnseesateesaaesabeesabeensaeenne 15
Sending Messages to Components: 15
USING the PrECOMPILET......c..eeiuiiiiriieiieiieteteee ettt sttt ettt e ae et bt sbeesaeenaeenee e 15
USING the TUNLIMIE. ..ottt ettt ettt ettt et e et et e sh e eae e eesaeeaae e et eaeebeembesaeebeemeeeseenseentesmeenseensannnas 16
Passing/Retrieving Parameters: <>, <I>, <:> 16
USINg the PreCOMPIIET.........oouiiiiiiiiiieie et et sttt e 17
USING the TUNTINE.ccuvetieitieiietieitesteeit ettt ettt et sb et e et sbeesae st e sbe e bt sbbesbee bt ebeesbeenbeeatesaeenaesnnenseen 18
Session Parameters: ><, >I<, >:< 19
USING the PrECOMPILET.c..eeiuiiiiiiie ittt ettt sttt ettt sttt e et eatesbaenbeenbeas 19
USING the TUNTIME.ooiiiiiiiiieiiiieieetete ettt ettt ettt e et esae e saeeane s e e saeemnesaeesneennes 20
Creation/Initialization 20
Advanced Message Handling: Active/Reactive/Passive 21
Interrupt handling: The active keyword 22
SOCKEtINtEITUPLHANAICT.c..eeiieiiieieiieie ettt ettt et sttt et st sbt e sbe et e st eatebeens 22
TimingInterruptHANAIET ..ottt e 23
Advanced Message Passing 23
Predefined FRELAS.coouiiiiiiiie ettt et ettt ettt e bbbt st e et es 23
MESSAZE DEIIVETY OITET.......c.eeeieinieiiiiitieierte sttt ettt et st ettt et s b e bt et s bt e sbe e b e sbeesbeenaesaees 24
Race Conditions/ DEAAIOCKS...........couerutiiiiriirieieeieeiteee ettt ettt sttt ettt e sbe e eaae e 25

SEESCOA PROJECT THE COMPONENT SYSTEM

Example: Http Daemon 25
= 11« TSP RRRU 26
CLOCK. ¢ttt ettt ettt ettt et e s a e e et e bt e bt e e e bt e e bt e bt e e bt e s a bt e s bt e bt e e bt e e abe e b e e e eneesatean 26
AACCESSCOUNLRT ...ttt ettt et et et eab e et e et eat e eate bt eaeesbt e bt eat e s et e bt et e eebeeesesua et e ebesmbesbeesbeenbeenseemeenuee 27
HUMISENACT ...ttt sttt ettt ettt sae et eat e sae e et eaeesbeemeesaee 27
HIEPAMAIN. ...ttt s h et b e s h e s bt et e et e s et e e bt e bt e st e eateebe et e enteenbeebeesbeenbeenaeeaeas 28

Standard Glue Components 29
The Wait COMPONENL.........cceutiiiiiietintenttettet ettt ettt st et sttt sttt eate st e seseestebesae bt sbesaeeateseeasentensensenaensenee 29
DiSpatCher COMPONEIL......cccuveriieriieiieeiee it ettt eteeste ettt ebeesteestteebeessseesssessseesaseesseesnssesnseeseessssesssessnsesnssen 30
ODSEIVADIE. ...ttt ettt ettt et b et b e bt et b e e bt e et e bt e bt e ab e bt e et s e bt e et e ean et eane s 31
DIESCIIDING LLOOPS. ... ettt ettt ettt sttt et e s bttt e st e s bt et e e st e sbeemtesatesbeemeesatesbeeneesbeenaeeneas 32

USING THE COMPONENT SYSTEM.........ccosmnemmsmmmsesesmssasssnns 33

Running The Component System 33

Message Flow 35

Message Handlers 36
The Standard Message HandICT...........c.couiririiriiiiniiicieeenteeeteeetese ettt ettt st et sttt 37
The Tracing Message HANIET............cocueiiieiiiiiiiieeeeee ettt sttt ettt et et e e e teeeeenaesneas 38
The Timing Message Handler............coceiriririininiiiiienecert ettt ettt ebe e 39

Schedulers 11
Scheduler Provisions offered by the Component SYSIEIM.........cceerueruerieriireineineeneeneeneene et et eareeane s 41
STUPIASCREAUIETttt ettt sttt st sae et et sbt e b e bt esaessnenbeens 43
StaNAArdSCREAUILT ..ottt ettt ettt e a et e s et e e e e bt et e saeenaesaeenbesneebeeneenseaneans 43

EDF Scheduling and Timing contracts 45
TIMING CONTIACES. ...ccuteiuiiiiie ittt ettt st e e et e s e e sae e et ese e eaeesaeen e et e easeeaeesueeaneennesanenanes 45
Principles Of the SChEAUIET...........couiiiiiiiiiie ettt st 48
ALUSCEIATIO. ...ttt ettt ettt ettt e bttt e bt e s bt e a b e b e e et e bt et h et bttt e b et eh e bt eae e be e st e s bt e nbeentenbeenaeeaees 49
POSSIDIE EXLENSIONS.c.uteeueeiieiie ettt ettt ettt ettt e s bt et e eb e e she et e eb e et enteebe et e emtesbeemteemtesbeenteensesbeenseenseeneas 50

THE COMPONENT SYSTEM & EMBEDDED SOFTWARE DEVELOPMENT..........oomnmmmmmsssmsssnsnananns 52

Opportunities for software development 52

Opportunities for embedded software development 52

THE FUTURE OF THE COMPONENT SYSTEM........ccounmmmmmmmmmsmsmssssssmssssssssssssssssssssssssssssssssssssseseses 54

High Priority 54

Low Priority 55

REFERENCES..........ccoiiitrissssssmsssassssssssssssssssssssssssssssssssnsssssssssssssssssasssnns 56

SEESCOA PROJECT THE COMPONENT SYSTEM

Introduction

The very nature of real-time embedded applications makes certain characteristics of their implementation
(such as timing and implementation architecture) critical. Usually, the software in these applications is
responsible for the control of other equipment; so designing a correct solution requires a good expertise to
glue non-standardized components together.

Most real-time embedded systems are, by nature, multitasking solutions to real-world problems. They
typically deal with the interface and control of multiple external devices. The different parts of these
systems usually run at different priorities and with different run-time characteristics. The notion of multiple
tasks or threads being active in the system at the same time is common. Many of these real-time systems
are deployed on a set of microprocessors in a distributed architecture. Designing a solution for this type of
problem requires a new adapted view to components.

This document describes the component system so far. It describes how it should be used when
programming components and it describes how the system itself can be adapted. This document is split
into four parts:

v" The first part describes what a component is and gives a good idea how to think
about components (at implementation level). This part is based upon the
'Component Working Definition' deliverable. This section also contains a description
of the Component System and what it is supposed to cover.

\

The second part is a discussion about 'event based' vs 'thread based'.

\

The third part describe how we actually can write a component. This is mainly a
tutorial.

v" The fourth part describes how we can use and tune the component system to suit
our needs.

SEESCOA PROJECT THE COMPONENT SYSTEM

Components and the Component System

A component is a reusable documented entity that is used as a building block for software systems. It is
used to perform a particular function in a specific application environment within a specific component
system. Components are composed (glued together) using their interfaces. These interfaces consist of
provided interfaces and required interfaces. A provided interface describes how the functionality has to be
accessed. A required interface describes what is needed to perform this functionality.

In this definition a distinction has to be made between a component blueprint and a component instance.
A component blueprint is a description of a reusable software element; a component instance is an
instantiation of this description. A component blueprint doesn't have a state, a component instance does.
It also doesn't make sense to talk about the runtime properties of a component blueprint; only component
instances have runtime properties. This distinction is important for a clear definition. The term component
is more general; by using it we mean both aspects.

Component instances are not objects. And as a consequence, component blueprints are not classes.
When a component is implemented, it will probably use different objects to perform its functionality (of
course in the case an OO language is chosen). Therefore some books talk about components as if they
were big objects. This is true to some extent, but limiting the component definition to this would be wrong.
A component instance should be thought of as having its own code & data space and also its own reactive
behavior. This is necessary to have the ability to use different synchronization principles and make
components reusable. A component worked out, thinking it has its own control flow will be more general,
than a component which enforces certain calling strategies upon other components.” Or, a component
written in the assumption its memory will be accessed by other components is more specific than a
component which doesn't share its data via these kinds of techniques.

As described in an earlier deliverable we distinguish 4 levels of component abstraction. (syntactic,
semantic, synchronization and quality of service level). This document deals only with the first, syntactic,
level.

The component system is the infrastructure (framework, architecture or kind of operating system), which
makes component instances work together, which glues them and creates a homogenous environment for
them. The component system can be seen as the middle-ware which connects different components and
which makes them work together. To put it differently: the component system provides the streets while the
components are the cars driving on it.

The component system:

'~ For example, database applications written as if they are standalone programs will receive a
message and send an answer back to the caller some time later while the originating component
can do other things. Written in the other way, the database component will block the sender which
is not reusable without writing adapters and other middle ware.

SEESCOA PROJECT

THE COMPONENT SYSTEM

v' Makes components work. The component system can create and destroy

component instances and is able to start and stop component instances.

The component system can have support for introspection. When working with
components we need the ability to find, name and rename components. These
abilities should be provided by the component system. Furthermore, sometimes it is
necessary that a client can query a component about its services. Mostly the client
is bound to the component's interface at client construction time (e.g. when the client
is compiled). When introspection is possible, the client is not bound at client
construction time, but it can dynamically (at runtime) find the services of a
component. This can be compared to the reflection mechanism in Java.

Abstracts the hardware and the operating system such that all components can
run in the same environment. The component system offers a standard interface
towards all components and offers device dependent components.

Handles message passing between components: If a component wants to make
another component do something, or whenever the state of another component has
to be changed, a message is send to the component in question. Components can
send messages to other components using a reference (which can be obtained by
using the unique name of the component). The component system takes care of
sending data (over a network for example), calling the right function on components
and eventually other ways of passing messages between components. This includes
changing the data format if necessary, as is done in CORBA. Nevertheless, the
component system is not necessarily a distributed environment.

The component system handles the scheduling between components. Because
components are thought of as active entities it is necessary to map this view to a real
operating environment. This is done by the component system, which ensures
priorities of messages between components, which takes care of (hard) real time
constraints and scheduling in general.

The component system has some standard glue components to adapt interfaces
between different components. For example, a certain component can return a
callback with a specific name, whilst the receiver expects the message with another
name. This can be done by certain glue components.

The component system should help in debugging by checking whether interfaces
are used in the right way. The component system understands the synchronization
interfaces provided by the components and can automatically check whether the
right calling sequence is used. Another possibility is logging all sent messages.

SEESCOA PROJECT THE COMPONENT SYSTEM

These things are offered by the component system in the form of a runtime environment (the component
system runtime) and a precompiler which transforms ‘component code' into suitable Java code. We added
a precompiler because it allows us to change the component system runtime without the need of changing
all the source code written so far. The precompiler also offers us eventually a possibility to compile to other
languages instead of Java.

The component system has a difficult task to offer all these things (especially glue components, the
transparent distribution layer and last but not least the timings and timing constraints) together. As such we
decided that we needed an very flexible open meta message protocol.

The component system offers this in the form of an asynchronous message delivery system. The choice of
an asynchronous event handling system versus a process based system is describes in the next section.

SEESCOA PROJECT THE COMPONENT SYSTEM

Events vs Threads

The component system is an event based model instead of a process based model. This choice is based
upon our experience but may require some more argumentation. In regard to distributed systems and
concurrent running programs there are some very essential problems:

v" Deadlocks, which is the result of a proces waiting for a proces which direct or
indirect waiting for the original process to do something.

v" Data sharing, which is a problem in distributed environments. If a piece of data is
transferred to another machine its state is independent of the original state. This can
also lewad to unexpected behavior.

v" Race conditions, which means that the behavior of a program depends upon its
execution speed.

It is clear that these problems cannot be esalily solved. Solving these would be rather interesting (to put it
eufemistic), but it is not the scope of the project.

To illustrate our choice we will describe both methods, together with their standard solutions, advantages
and disadvantages.

Thread Based Models

Summarized: processes run concurrent in a shared data space. They communicate by using shared
variables. They synchronize upon variables. Resources are considered as variables (abstract spoken that
is)

Advantages:
v"As long as we program processes which minds there own business and doesn't
require too much interaction everything is peachy. We can write programs as we
would write single threaded programs.
v" If we program correctly and implement a well designed locking strategy into an
application we might not have to much dificulties.
v’ At the time being this way of working is probably much more performatn than using
an event based method.
Disadvantages:

v" Multi threaded programs tends to explode in complexity very quickly if we use a fine
grained locking strategy.

v" The complexity of multi threaded programs can be avoided by using a very course

SEESCOA PROJECT

\

THE COMPONENT SYSTEM

locking strategy, and in fact by sequencing the program. In this case threads are
useles.

Multi threaded programs are difficult to implement in distributed environments
because we need some kind of data sharing between processes.

Processes can wait for each other, which can very easy lead to deadlocks. This non
local property cannot be solved by one of the communicating processes because
none of them understands in what kind of environment they're put to use.

Concurrency problems are difficult to debug because they are difficult to repeat.

Priority systems in multi threaded environments are troublesome, because the
priority is most of the time not linked to the functionality which is being served.

Priority inversion.

Event Based Models

Summarized: components have their own code/data space. Components communicate by means of
sending messages (events) to each other. Components can only handle messages, they cannot wait for

each other.

Advantages:

\

Are easy implemented in distributed environments, because an 'event' can be send
over to the other partner. (It is useless to wait for components over the network.
Instead we can start handling other things.)

Since we cannot wait for another component to do something we need to change
the way we program. We now have to think asynchronous instead of synchronous.

Larger components are definitely easier and more natural to write because more
time goes into the logic of the component, not into the interaction between
components.

Makes it easier to debug an application because we can use a record/replay
component system which can repeat a sequence of events without too much
problems.

Avoids polling loops and badly written code. Everything is interrupt driven and as
such only acts when needed.

If we specify constraints upon events we can do runtime constraint checking upon
the sequence of messages.

We can use a very fine grained priority system which is closely linked to the
functionality being served.

No priority inversion !

If we specifiy the correct constraints we can deduce what has to happen before a
certain action is executed. (component A is waiting for component B and component

SEESCOA PROJECT

Disadvantages

(\

\

THE COMPONENT SYSTEM

C before it will do action a). This kind of backward chaining is very difficult to write
down in event based methods.

The programmer need to think about how to write their components and very small
components are wonderfully hard to write.

Without an extra burden upon the programmer the system can understand what a
component is waiting for. This extra semantic information is very useful.

The size of the code becomes 4 time larger for small components. Altough a
drawback, this problem dissolves if we start writing bigger components.

We can never wait for another component to change its state.

To avoid data sharing between components we have to copy events from one
component to another. This logic can be slow.?

Slower than thread based methods.

Events doesn't solve the standard concurrency problems as one might tend to
conclude.

As can be seen, both methods have there advantages and disadvantages. We choose the event based

method because

v
v
v

The system will become distributed
Event based methods adds semantic information

Are easy implemented in single thread environments (some small scaled embedded
systems for example)

- We actually don't have to copy the evnt. We can treat the event as read-only or we can transfer
ownership upon the event from one component to the other.

10

SEESCOA PROJECT THE COMPONENT SYSTEM

Writing Components

This section documents the current version of the component system. Since the component system is in
continuous development, changes are to be expected. Nevertheless, this documentation gives a good
insight view how components should be written and why the design is as it is. Throughout this manual we
will built a small application.

The application will be a webserver component which communicates with other components acting as .cgi
scripts, answering to certain urls. These components are called UrlHandlers. The webserver itself is called
a WebDispatcher which dispatches incoming 'GET' requests to the correct UrlHandler components. These
in turn will answer with a generated webpage.

WebDispatcher UrlHandler
GET ... >
GenerateHtml(_..) »
ﬁ Html(...)
< HtmlDone(...)
Send Html back

Before reading the manual some things need to be cleared up. We need to define a component at the
implementation level.

A component is a reactive entity which uses its own code and data space. Components
should only send messages to each other to change each others state. Components run
concurrent, but all actions in @ component are accessed by only one thread.?

Components can be written in two ways. Either we write them ourselves in java, immediately calling the
runtime component system, or we use a precompiler which translates .component files to .java files. We
strongly suggest to use the .component file format, because it allows us to change the internals of the
component system without endangering all written code. Nevertheless, the current component file format
is not yet finished, so beware. To translate a .component file into a .java file we use the component parser,
called Transformer, as follows*:

3- This implies that a component should seldomly use the synchronized keyword
- Please fix the classpath before calling the Tranformer

11

SEESCOA PROJECT THE COMPONENT SYSTEM

java component.parser.Transformer <filename>
eg: java component.parser.Transformer Httpd

The filename is mentioned without the .component extention. Currently the precompiler outputs barely
readable java code, but this is not really an issue. Worse is that the precompiler sometimes is unable to
expand a piece of the grammar which ends up with a fault:

——-Err: > expression <
--Err: please send this message to
——-Err: werner.van.belle@vub.ac.be

This error should be reported immediately to wemervan.belle@vub.ac.be. This means that you are using a
certain kind of expression in the .component file which is not yet supported. For example, if we try to use a
goto statement, the precompiler will break.

The following sections contains a step by step guide how we can write these UriHandler/WebDispatcher
components.

Naming Components

Every component blueprint has to be named uniquely. This simplifies its reference (if, for example,
the component blueprint is stored in a catalog). It should also be possible to have multiple
versions of a component blueprint. Therefore the identification of a component blueprint consists
of an identification name and a version number.” When component instances are instantiated
from the same component blueprint, they also have to be distinguishable by means of a unique
name. This name should be used to refer to the component instance.®

Component blueprints are named according to the Java naming conventions where the name
clearly states the purpose of the component. This name is always capitalized at the beginning of
the identifier (as if it were a java class). Furthermore the identifier has a capital at each start of an
English word. Component instances have also a human readable name, stating clearly the
purpose of the instance. Abbreviations are capitalized at the first letter. All other letters of the
abbreviation should be lower case.” Underscores and other strange characters are normally not
allowed unless used internally in a single component.

>~ When using the term 'version' here, the 'implementation version' of the component is meant, not

the version of the component's interface (like COM). Currently the component system has no
explicit versioning support.

6~ This direct mapping from name to reference simplifies dynamic binding. (as described in the
'Component Working Definition' deliverable.

- It may look a bit overkill to have such a strict naming convention but it is absolutely necessary
since we have no compile time name checking algorithm. So, there is a difference between
HttpdInstance and HTTPDInstance.

12

mailto:werner.van.belle@vub.ac.be

SEESCOA PROJECT THE COMPONENT SYSTEM

Example of component names:

WebDispatcher OK
HttpDaemon OK
HtmlSender OK
SendHtml OK
WEBDispatcher NOT OK
webDispatcher NOT OK
Webdispatcher NOT OK
HTTPDaemon NOT OK
Httpdaemon NOT OK
HTMLSender NOT OK
htmlSender NOT OK

Instance names given to components are used to refer to them and send messages to them at
runtime. The name should be chosen in such a way that it defines the use of this instance in the
system.

Define it as a Component: The componentclass keyword

A component is not equal to a java class. A component is represented by an instance of a java
class, nevertheless the component can use other classes to help it to perform the tasks it is
constructed for.

A components variables and other structures to which it relates are owned by the component and
should be considered as such. For example, if a component has a reference to a linked list
somehow, this linked list is ‘owned' by the component and only by that component. As such, we
obtain a set of code/data islands at runtime which interact with each other at runtime via the
component system. We have two ways to declare something to be a component.

Using the Runtime

At runtime a component is represented as a java class which directly (or indirectly) inherits from
the Component class which is available in the component.system package.*The component base
class provides some basic functionality such as sending messages, handling messages,
initializing, retrieving the components name, assigning message handlers and so on. Bottom-line
is that if we want to write a component the easiest way is to extend from Component.

Example: if we want to write an AccessCounter UrlHandler:

public class AccessCounter extends Component
{

private int counter;

8- Sometimes, component is overloaded in other packages so it is possible you have to write
extends component.system.Component

13

SEESCOA PROJECT THE COMPONENT SYSTEM

Components may be constructed by inheriting from each other to add functionality to the other
component, as long as we don't have any unanticipated code/data sharing via static variables. °
For example, there are a number of standard glue components provided which offer you a certain
functionality which you do not want to implement every time you write a component. The
SubscriberDispatcher glue component is a good example. This component understands
subscribe request and is able to dispatch a message to other components, depending on the
subscribed components.

public class Httpd extends SubscriberDispatcher
{...
}

Using the Precompiler

The precompiler offers a special brand new syntax to declare a component. This is done by using
the keyword componentclass. This keywords behaves as the class keyword except that some
extra intermediate code will be inserted in the class. For example, instead of writing ‘public class
<x> extends Component', we can write:

componentclass AccessCounter
{

private int counter;

}

We advice using the componentclass keyword because it allows us some flexibility in generating
code. For example: It is currently rather difficult to make a standard java class (lets say Frame)
behave as a component. The trick we use around the impossibility to inherit from Component is
using a bridge variable to some component-representant. If you use the componentclass keyword
this code might be automatically generated in the near future !

Handling Incoming Messages: The message keyword

When creating a component system, the ComponentSystem will send an Init message to our
UriHandler after creating the component. If we want to respond to this message we have to
implement its behavior somewhere. We do this by writing a public synchronized argument-free,
void-returming method (message thunk for short) in the AccessCounter class. All messages which
arrive for a component are automatically translated into method calls in the Java class.

°- The reason behind this code/data separation between components is called 'distribution'

14

SEESCOA PROJECT THE COMPONENT SYSTEM

Notice that the naming convention for messages is the same as for Java method names, except
for the fact that component messages starts with a capital.

A component message never has any parameters declared in its signature. For more information
on how to pass information to and from a thunk see the paragraph on Passing/Retrieving
Parameters.

Using The Runtime

public class AccessCounter extends Component
{

private int counter;

public synchronized void Init ()

{

counter = 0;

}

Using The Precompiler

The precompiler offers a special keyword: message. This keyword automatically expands to
public synchronized void.

componentclass AccessCounter
{

private int counter;

message Init ()

{

counter = 0;

}

Sending Messages to Components: ..

The AccessCounter should be able to respond to GenerateHtml messages. It should do this by
sending a webpage to the WebDispatcher. When all HTML parts have been sent, the
accesscounter should send a HtmlDone message. Let's have a look at how we can send this last
message.

Using the Precompiler
If we have stored the name of the component in a webserver variable, we can send the HtmIDone

message to the webserver by using the special .. notation. .. means 'send the message (after the
..) o the component (before the ..)".

15

SEESCOA PROJECT THE COMPONENT SYSTEM

componentclass AccessCounter

{
private int counter;
private static final String webserver="WebDispatcher"

message Init()
{
counter = 0;
}

message GenerateHtml ()
{
webserver. .HtmlDone () ;

}

If we want to specify the WebDispatcher literally®, we can write

"WebDispatcher"..HtmlDone () ;

If we need to calculate the name of the component (using retrieveWebDispatchersName) before
we send a message to it we can write

retrieveWebDispatchersName () ..HtmlDone ()

The reason why we are using a .. notation is to make the difference between synchronized sends
between objects and asynchronous sends to components.

Using the runtime

If we want to send message to the WebDispatcher using the component system runtime without
going through the precompiler, we can use the sendMessage method (defined in the component
base class).

sendMessage (webserver, "HtmlDone") ;
sendMessage ("WebDispatcher", "HtmlDone") ;
sendMessage (retrieveWebDispatchersName (), "HtmlDone") ;

Passing/Retrieving Parameters: <, <>, <>

The parameter passing/retrieving mechanism is of a strange kind. We do not rely on the java
standard parameter passing mechanism since it is too strict. The standard parameter passing
mechanism makes it very difficult for us to write glue components and to transform messages

- Notice that the first method is preferred because it allows us to do java-compile-time checking.
If we are smart we define all the component instance names as static final string constants
somewhere.

16

SEESCOA PROJECT THE COMPONENT SYSTEM

which are being send between components.

The current mechanism works incrementally. Before sending a message to another program (By
using the .. notation or the sendMessage call) we create a set of parameters, step by step. We do
this by adding fields to an 'outgoing message' record. At the moment we actually has sent the
message this set of parameters is cleared and we can start creating a new set of parameters.

To retrieve the parameters we also work with a special ‘incoming message', from which we can
retrieve certain fields by asking for them. We will now illustrate this in our accessCounter. The
WebDispatcher expects a Html message before a HtmIDone arrives. This Html message should
contain a Data field which contains a String with the HTML data in it."

Using the Precompiler
<x> retrieve parameter x
<ylx> retrieve parameter x and typecast it to y
<xX:y> putting a parameter x with value y
Example:

componentclass AccessCounter
{
private int counter;
private static final String webserver="WebDispatcher"
public void Init()
{

counter = 0;

}
public void GenerateHtml ()

{

<Data:"You have accessed page" + <String|Url>>
webserver..Html () ;

"WebDispatcher"..Html (<Data:", "+ (counter++) +"times">);
<Return>..HtmlDone () ;

}

This example illustrates some possible uses of this mechanism.

v" The first line (GenerateHtml:1) puts a field in the outgoing message, which will be
send at the moment Html is send (GenerateHtml:2). This field is called 'Data’ and
contains the string "You have accessed page ", with the name of the Url appended to
it. The Url is retrieved using a <StringlUrl> syntax. This means that the Url is
retrieved as an object and casted to a String.®

"' In the future we will probably add some wrapper-invoker which actually calls the messages with
correct object names.
2. This syntax can help some smart precompiler to do type checking before the code actually runs.

17

data:
data:

SEESCOA PROJECT THE COMPONENT SYSTEM

v" The third line (GenerateHtml:3) illustrates how we nevertheless can place this in the
asynchronous send. This line creates a field called 'Data’ which contains the number
of times the page has been accessed. We see how a side-effect in putting a
parameter is only executed once. (which is what we would expect of course)

v" The fourth line (GenerateHtml:4) illustrates how we can use the field lookup as an
argument. Here we use the knowledge that the only one who will ask us to generate
HTML might be interested in the answer. As such we return the messages to our

caller, which is stored in the 'Return’ field."

Below is another example of the getters and setters.

public void Update() throws Exception
{
Socket ¢ = (Socket)<Socket>;
InputStream is=c.getInputStream();
String URL;
BufferedReader dis=new BufferedReader (new InputStreamReader (is));

URL=dis.readLine () ;
if ((URL != null) && (URL.substring(0,3).equals("GET")))

{
URL=URL.substring (4) ;
URL=URL.substring (0, URL.indexOf (' ")) ;

dispatchTo (URL) . .GenerateHtml (<Url:URL>) ;
}

else c.close();

}

This example is called from an interrupt handling component. The socketinterruptHandler will
send Update to the WebDispatcher at the moment there is a new incoming connection. This piece
of pseudo code is what could happen when somebody connects to our WebDispatcher.

Using the runtime

If we want to use the runtime immediately we can use the getField and putField method calls.
These methods are made available in the component base class.

getField(name)
returns an Object. Name should be a String.

putField(name,value)
with name to be a String and value to be an Object.

(This will be necessary)
8- As a side note, the Return field is automatticaly filled in by the component system. Return is

passed as a field in the incoming message.

18

SEESCOA PROJECT THE COMPONENT SYSTEM

The putField methods must be invoked before invoking the sendMessage method. The order of
the putField commands doesn't have any effect.

Session Parameters: ><, >l<, >i<

Now, if we remember the Update method of the Hitpd-Component and we think very careful
about the implementation of the Html and HtmlDone messages we may encounter a small
problem. We need to pass the socket which we received in the Update message to the Himl
message which will be received in response of the GenerateHtml message. We could do this by
adding a Socket datafield to the GenerateHtml message and requiring that everybody who
actually generates HTML passes this field back to ourselves. This works, but has a number of
major drawbacks:

v" We have to change all components which will ever connect to our Httpd-Component
whenever we change the interface.

v We don' have data hiding anymore, if a certain UrlHandler decides it wants to write
immediately to the socket, we're screwed.

v We actually don't need to pass these socket fields, we can keep them local in the
Httpd component and retrieve them when we retrieve a message back from a
UriHandler. *

To support this we have created a special field (with special field notation), called the 'Hidden
Fields'. A hidden field is a field which can be passed to another component. If this other
component, in handling the message, decides to sent a message to somebody else, this hidden
field is implicitly copied in the outgoing message.

Using the Precompiler
If we use the precompiler, these fields are annotated with reversed brackets. We use >< instead of

<>, We use >< instead of <:>, and we use >l<, instead of <I>. All the fieldnames we choose are
automatically prefixed with the name of the component. This is to avoid nameconflicts.

>X< retrieve hidden parameter x
>ylx< retrieve hidden parameter x and typecast it to y
>X1y< put hidden parameter x with value y

Example: The example below illustrates how we could use this to make the Httpd-Component
work, without having to change the UrlHandlers interface.

“- This may sound as splitting hairs but it is not. If we work in a distributed environment this
means that we don't have to pass these extra objects over the cable.

19

SEESCOA PROJECT

THE COMPONENT SYSTEM

public class Httpd extends SubscriberDispatcher
{
public void Html() throws Exception
{
>BufferedWriter|Dos<.write (<String|Data>, 0,<String|Data>.length());
}
public void HtmlDone() throws Exception
{
BufferedWriter dos = >BufferedWriter|Dos<;
dos.flush();
dos.close();
>Socket | Socket<.close();
}
public void Update() throws Exception
{
Socket ¢ = (Socket)<Socket>;
InputStream is=c.getInputStream();
String URL;
BufferedReader dis=new BufferedReader (new InputStreamReader (is));
URL=dis.readLine () ;
if ((URL != null) && (URL.substring(0,3).equals("GET")))
{
URL=URL.substring(4) ;
URL=URL.substring (0, URL.indexOf (' '));
OutputStream os=c.getOutputStream();
BufferedWriter dos=new BufferedWriter (new OutputStreamWriter (os));
dos.write("\n");
dispatchTo (URL) . .GenerateHtml (
<Url:URL>, >Dos:dos<,
>0Os:c.getOutputStream() <, >Socket:c<);
}
else c.close();

}

Using the runtime

getHiddenField(name)

Retrieve hidden parameter with name name.
Returns an Object
Name should be a String.

putHiddenField(name,value)

Put hidden parameter name with value value
Name should be a String
Value should be an Object.

Creation/Initialization

Creating and initializing components is a rather troublesome task at the moment (we know), but

this will change in the near future. Currently components are initialized by calling the
createComponent method upon the component system. This method takes two parameters. The
first one is the name of the class representing the component (fully qualified), the second

argument is the runtime instance name of the instantiated component. For example:

createComponent ("httpd.Httpd", "HttpdDaemon") ;
createComponent ("httpd.AccessCounter", "Kul") ;

20

SEESCOA PROJECT THE COMPONENT SYSTEM

createComponent ("httpd.AccessCounter", "Rug") ;
createComponent ("httpd.AccessCounter", "Vub") ;
createComponent ("httpd.AccessCounter", "Luc") ;
createComponent ("httpd.HtmlSender", "HtmlSender") ;
createComponent ("conduit.ConduitRunner", "ConduitRunner") ;

This method will create a component (using the single-String-parameter constructor of the class)
and send an Init message to the component. So if we want to initialize a component, we should
do this in the Init method, not in the constructor. Using the constructor is a bad way to initialize a
component because it is too Java specific.

Nevertheless, this simple creation/initialization scheme has some drawbacks.

V" First of all, we have to use fully qualified classnames instead of component blueprint
names.

v Second, we are unable to initialize a component and pass parameters to its
initializations. (Which makes initializing these things rather troublesome)®

v" Third, this runtime call is not represented in the special component syntax which
makes it difficult for us to change its implementation (so beware :-)

Advanced Message Handling: Active/Reactive/Passive

A question which arrives from time to time is whether components can have their own thread,
whether they are active, passive or how they position themselves in a multi threaded environment.
The answer is simple.

Components are defined as active entities which have their own thread of execution: well,
components should be designed this way, handling incoming messages as needed. This doesn't
imply that they should have an execution loop waiting for messages. *

In fact, components are completely passive entities that do not have their own thread. Whenever
a message arrives for a component the component system will call the component's
handleMessage in a thread owned by the component system. This thread should be given back
to the component system as soon as possible (after handling the message). A component should
never wait in a message which is being handled. Defined as such, components are passive.

On the other hand, components should be designed as 'active’, so what will it be. We propose to
use the term ‘Reactive’, because they react on incoming messages and go to sleep afterwards.

- In the future we will probably make use of three kinds of messages. The first one will be called
'Init' (without fields) to initialize the component to a certain state. The second one will be called
'Setup' with any parameters passed to the createComponent method, and the last one will be called
'Reset' which will bring the object back to a certain state.

- T have to admit that the terminology was not entirely clear.

21

SEESCOA PROJECT THE COMPONENT SYSTEM

Interrupt handling: The active keyword

This arises the question how we can make real active components which have their own thread of
execution. This is not necessary. The only reason why we would want to have a thread is to
program in a synchronous way, which is the thing we do not want to do here, or to wait for some
event to happen.

The latter case is in fact a sort of interrupt handling, but doesn't require full thread support.
Because this is a thing which is always very environment specific and because these kind of
interrupt handlers require a very specific timing behavior it is necessary to integrate them tightly
into the component system.

In fact, making the bridge between the synchronous nature of some external influences and the
asynchronous nature of the component system is part of the component system. Alas, we cannot
provide every possible interrupt handler needed and as such we offer a way to declare a
message to be active. The active modifier keyword (a modifier is a keyword like abstract, public,
final, protected and others) says that a certain thunk can be called from somewhere else, without
knowledge of the component system.”

Below are two examples of already written interrupt handlers. The first is a SocketinterruptHandler
which listens on port 8080 to accept incoming connections. The second one is a
TimingInterruptHandler which sends a notify every <x> milliseconds.

SocketinterruptHandler

public class SocketInterruptHandler extends Observable
implements Runnable
{
message Init()
{
new Thread(this).start();
}
active message run()
{
Socket c;
try
{
ServerSocket s = new ServerSocket (8080);
while (true)
{
c=s.accept();
notify ("Socket",c);
}
}
catch (Exception e)
{
ComponentSystem.Fatal ("Socket error ?2?",e);
bi
}

- In alatter stage we may add some timing behavior of these kinds of active messages.

22

SEESCOA PROJECT THE COMPONENT SYSTEM

This code illustrates how to use a Java thread to wait for a certain condition to happen. (for a
certain interrupt if you want). Whenever the interrupt arises we notify all subscribed components
by calling notify.

TiminglnterruptHanaler

We have seen how we can write a threaded InterruptHandler which uses a thread to wait for a
certain condition to happen. This is, however, sometimes not needed, and we can use Java
supported interrupts to make an InterruptHandler.

componentclass TimerInterruptHandler

{

message Set ()
{
Timer t=new Timer ();
t.scheduleAtFixedRate (
new TimerHandler (this),
Or
<Long|Rate>.longValue ()
)i
}

active message tick()
{
notify ("TimerTick","");
}
bi

class TimerHandler extends TimerTask

{
private TimerInterruptHandler ti;
public TimerHandler (TimerInterruptHandler ti)

{
this.ti=ti;
}

public void run()

{
ti.tick();

}
}

Advanced Message Passing

This section contains some 'advance' topics in the sense that they are pushing the use of the
component system to its limit, or they contain some unexpected behavior of the component
system which should be taken into account.

Predefined Fields

The component system passes parameters as fields in a Message object. This message record

also contains some predefined fields which shouldn't be used because they are used by the
component system. Nevertheless, they can be read and changed as needed, since this allows the

23

SEESCOA PROJECT THE COMPONENT SYSTEM

easy creation of glue components. These fields are described below:

Return
the name of the sending component.
type = String

Invoke
the name of the method to invoke upon the receiving component

type = String

Target
the name of the component which should receive the message.
type = String

Message Delivery Order

Another important issue when working in an asynchronous fashion is the order of delivery of
messages. The current requirements for any scheduler plugged into the component system are
as follows:

The sequence of the messages sent from one component to another will be kept. All other
sequence (between other components for example) is non deterministic.™

We will now illustrate this using a simple example:

A.Test() -> B.A1() + C.A2() + B.A3()"
C.A2() -> B.A2()

The possible arrival sequences of messages at component B are the following ones (no more no
less)®

Al + A2 + A3

This is the expected behavior, and is possible.
Al+A3+A2

This is also possible because component C sends a message (A2) and component A sends a
message (A3), both components are concurring to send a message, so one of them will have
priority. Thus, it is possible that A3 arrives at component B, before A2 arrives.

8- We know that the current delivery order is a messy thing and we hope to use (misuse) the
hidden parameters to specify some kind of order or priority on the messages which are being
executed.

- Which means that component A while executing the Test message sends to component B
messages Al and A3 and sends to component C message A2. (in left to right order)

- Of course if only Test is send to component A

2%

SEESCOA PROJECT THE COMPONENT SYSTEM

A2+ Al +A3

This very unexpected, very scheduler dependent behavior, should be taken into account. It is
possible that the scheduler has to choose whether to execute message B.A1() or C.A2(), because
it is only running one thread. If it chooses to run C.A2() because of faimess and afterwards has to
choose whether to run B.A1() or B.A2() it still can decide to first run B.A2(), also because of some
weird definition of fairmess :-)

A2 + A3+ Al; A3 + A2 + A1 and A3 + A1 + A2 are incorrect because A3 arrives before At.

Race Conditions/ Deadlocks

Another big problem of the component system are race conditions. The component system tries
to make parallelism and concurrency as transparent as possible to the component programmer.
This implies that he might think everything is peachy when writing components and passing
parameters. Of course, this isn't. Components are always accessed by one thread at a time.
Components should not have their own thread (to avoid timing problems, priority problems in the
scheduler and concurrency problems upon the components state).

Nevertheless there is an unavoidable concurrency in the objects which are shared between
different components. Normally there shouldn't be any of these objects, but in practice this will
happen immeditaly at the moment you send a message from one component to another. Leading
to unexpected behavior of the program.

For example, suppose we pass a big database object from one component in a message to
another component. Now both components can access the database object concurrently. The
database probably doesn't know this, and both components will think they have unique access to
the database, leading to race-conditions, or deadlocks.

The problem in this example is the fact that we allow both components to change the database.
This should never be allowed. Passed messages should be treated as read-only and should be
copied in a perfect world. This rule is enhanced by the fact that whenever we work in a distributed
environment we will need to copy the data from one processor to another and writes upon it will
be completely impossible.

Currently, we are thinking to add the notion of ownership to the component system. An
event/object is owned by only one component. All other components which can access
this object can only read it, NOT modify it.

Example: Http Daemon

This is the complete example we showed in fragments throughout the manual. The HttpDaemon
example consists of a number of components. We have the Httpd-Component (the main
component if you want), the AccessCounter-Component, the Clock-Component and the

25

SEESCOA PROJECT THE COMPONENT SYSTEM

HtmISender-Component. Furthermore we have the interrupt handling component,
SocketinterruptHandler.

Htpd

This example should be looked at very careful, because it illustrates the use of the hidden
parameters. We see how some hidden fields (a buffered writer, called 'Dos' and a socket, called
'Socket)) are passed to the UrHandler. When the UrlHandler sends a message back to this
instance of Httpd we will now what socket and what buffered writer we were using.

public class Httpd extends SubscriberDispatcher
{
public void Image() throws Exception

{
JPEGImageEncoder encoder;

encoder=JPEGCodec.createJPEGEncoder (>OutputStream|Os<) ;
encoder .encode (<BufferedImage | Image>) ;

}
public void Html() throws Exception

{
>BufferedWriter|Dos<.write (

<String|Data>, 0,<String|Data>.length());
}

public void HtmlDone () throws Exception
{
BufferedWriter dos = >BufferedWriter|Dos<;
dos.flush();

dos.close();
>Socket | Socket<.close();

}
public void Update() throws Exception

{
Socket c¢ = (Socket)<Socket>;

InputStream is=c.getInputStream();
BufferedReader dis=new BufferedReader (new InputStreamReader (is));

String URL=dis.readLine();
if ((URL != null) && (URL.substring(0,3).equals("GET")))

{

URL=URL.substring(4) ;

URL=URL.substring (0, URL.indexOf (' "));

OutputStream os=c.getOutputStream();

BufferedWriter dos=new BufferedWriter (new OutputStreamWriter (os));

dos.write("\n");
dispatchTo (URL) . .GenerateHtml (
<Url:URL>, >Dos:dos<,
>0Os:c.getOutputStream() <, >Socket:c<);
}

else c.close();

}

Clock

This is probably the most simple example of an UrHandler. This very small piece of code is a
component which only responds to GenerateHtml. This example shows how to declare something
as a component. How to handle messages and how to send back a message.

26

THE COMPONENT SYSTEM

SEESCOA PROJECT

componentclass Clock

{

message GenerateHtml ()
{<Return>. .Html (<Data:new Date() .toString()>);
<Return>. .HtmlDone(); }

}

AccessCounter

This component illustrates the Init method very clear. The init method is send by the component
system, immediately after creating the component.

componentclass AccessCounter

{
private int counter;
message GenerateHtml ()

{

counter++;
<Return>..Html (<Data: new String("<HTML><BODY>Deze pagina is "+counter

+" maal opgevraagd</BODY></HTML>")>);
<Return>..HtmlDone () ;
}
message Init ()
{counter = 0;}
}

HtmiSender

This example illustrates how messages are constructed. In this case, we first construate the 'Data’
field for the 'Html messagge. If this is done, we actually send the message.

public class HtmlSender extends Component
{
static final String fileNotFoundHTML = "Not Found";
static final String noAccessHTML = "No Access";
public void GenerateHtml () throws Exception

{

try

{
String buffer = new String();
BufferedReader fin = new BufferedReader (new FileReader (<URL>)) ;

try
{
String line = "";
do {buffer += line;
line = fin.readLine();} while (line != null);

<Data: buffer>;
}
catch (IOException ioException)
{
<Data:noAccessHTML>;
}
}
catch (FileNotFoundException e)
{
<Data: fileNotFoundHTML+homePath+<URL>+"</BODY></HTML>">;
}
<Return>. .Html () ;
<Return>..HtmlDone () ;

27

SEESCOA PROJECT THE COMPONENT SYSTEM

HtipdMain

Currently the component system doesn't offer a good main component. This is due to a lack of
time. Nevertheless, below is an example how we get this thing to work at the moment.

public class HttpdMain
{
private static Message msg=new Message();
protected static void createComponent (String welke, String name)
{
try
{
ComponentSystem.createComponent (welke, name) ;
}
catch (Exception e)
{
ComponentSystem.Fatal ("Creation Error"+name,e);
}
}
protected static Object putField(String nam, Object val)
{
msg.putField (nam,val) ;
return null;
}
protected static void sendMessage (String target, String invoke)
{
msg.putField("Target", target);
msg.putField ("Invoke", invoke) ;
ComponentSystem.instance () .sendMessage (msqg) ;
msg=new Message() ;

}

protected static void sendMessage (String target, String invoke, Object d0)
;endMessage(target,invoke);
protect;d static void sendMessage (String target, String invoke, Object dO,
Object dl)
;endMessage(target,invoke);

}

public static void main(String[] argv)
{
TimingMessageHandler timings=null;
int threadCount=10;
ComponentSystem.init () ;
if (argv.length >= 1)
threadCount=new Integer (argv[0]).intValue();
ComponentSystem.acceptScheduler (new StandardScheduler (threadCount));
ComponentSystem.start () ;

createComponent ("httpd.Httpd", "HttpdDaemon") ;
createComponent ("httpd.AccessCounter", "Kul") ;
createComponent

(

(

("httpd.AccessCounter", "Rug") ;
createComponent ("httpd.AccessCounter", "Vub") ;
createComponent ("httpd.AccessCounter", "Luc") ;
createComponent ("httpd.HtmlSender", "HtmlSender") ;

’

"HttpdDaemon" . .Subscribe (<Selector:"/KUL">, <DispatchTo:"Kul"
"HttpdDaemon". .Subscribe (<Selector:"/VUB">, <DispatchTo:"Vub"
"HttpdDaemon" . .Subscribe (<Selector:"/LUC">, <DispatchTo:"Luc">
"HttpdDaemon" . .Subscribe (<Selector:"/RUG">, <DispatchTo:"Rug">
"HttpdDaemon"..DefaultHandler (<DispatchTo:"HtmlSender">) ;

>)
>) i
).
)

’

’

28

SEESCOA PROJECT THE COMPONENT SYSTEM

createComponent ("httpd.SocketInterruptHandler", "Socket8080") ;
"Socket8080"..Subscribe (<Observer:"HttpdDaemon">) ;
}

Standard Glue Components

The glue components provided by the component system should be generic well-designed
components with as little as possible overhead towards the global system and which can
eventually be removed when compiling. We have made a start by offering some glue
components. We know that these are not as flexible as they ought to be, but at least they can
form a base of usable/reusable glue components.

The Wait Component

An often asked question is: ‘everything is asynchronous, how can we make an execution flow wait
for other components ?'. The answer is simple: interrupt driven. By sending an asynchronous
message at the moment both (or more) components has achieved a certain point, we can send
an interrupt back to the waiting component(s). This of course require a redesign of the software, in
the sense that we doesn't wait for other components. Instead we get notified when a certain
condition happens. As an illustration a simple wait component is implemented as glue?

Party I Wait Party II

Wait

Wait

Synced

Synced

public class Wait extends Component
{
private String inwait=null;
public Wait ()
{
}

- Please note that this wait component is far from being complete, nevertheless it gives an idea
how we can synchronize components with each other.

29

SEESCOA PROJECT THE COMPONENT SYSTEM

public void Init()
{
inwait=null;
bi
public void Sync()
{
if (inwait==null)
inwait=getReturn();
else
{
if (inwait.compareTo (getReturn())==0)
ComponentSystem.Fatal ("Double wait");
returnMessage ("Synced") ;
sendMessage (inwait, "Synced") ;
inwait=null;

}

At the moment a Sync operation is invoked, we check whether we are already waiting or not. If we
are not yet waiting we go to a wait state. If we are already waiting we send a Synced message
back to both parties, which can now continue with their logical execution.

Dispatcher Component

Another standard glue component is the dispatcher component. This component will keep track of
other components which subscribe themselves to a certain string. Afterwards we can easily
retrieve the name of the component which was subscribed to a string and send a message to it.

PI PII Dispatcher PIII
- P
Subscribe(A,P1§
DefaultHandler(PIIIr

DispatchTo(A,B()) g

B0

DispatchTo(C,D()) g

DO

public class SubscriberDispatcher extends component.system.Component
{
private TreeMap subscribers=new TreeMap() ;
private String defaultHandler;
public SubscriberDispatcher () {}
public void Subscribe ()
{subscribers.put (getField("Selector"),getField("DispatchTo"));}
public void DefaultHandler ()

30

THE COMPONENT SYSTEM

SEESCOA PROJECT

{defaultHandler=(String)getField ("DispatchTo") ;}

public void Unsubscribe ()
{subscribers.put (getField("Selector"),null);}

protected String dispatchTo(String selector)
{
String dispatchto=(String)subscribers.get (selector);
if (dispatchto==null) dispatchto=defaultHandler;

return dispatchto;

}

}

Observable

The observable component is a simple implementation of the 'Observer Design Pattern’. The
implementation itself requires some fine tuning, which will happen in the future. Below is an MSC

and the current code.
PI PII Observer PIII
Subscribe g
Subscribe >
B Changed
« Notify
B Notify

public class Observable extends component.system.Component
{
private TreeSet observers=new TreeSet();
public Observable ()
{
}
public void Subscribe ()
{

String observer=<String|Observer>;
observers.add (observer) ;
}

protected void notify(String name, Object wvalue)

{
Iterator it = observers.iterator();
while (it.hasNext ())

{

String observer = (String)it.next();
putField (name, value) ;
observer. .Update();

}

31

SEESCOA PROJECT THE COMPONENT SYSTEM

Describing Loops

The component system, designed to be used in embedded systems, should somehow enable the
programmer to give some kind of semantic information to the running system in regard to
scheduling. This information can be viewed as timing constraints placed upon MSC's, with
lowerbounds (what can the embedded system offer us in the best case) and upperbounds (what
do we expect the system to do. Of course, describing timing behavior of components and pieces
of code is troublesome. This because

v Most of the time, the code written is untracktable. This means that we cannot predict
at compile time how many times a loop will execute.

v" Even if we can predict how much time it takes to handle a message, we still have the
problems of loops between components which cannot be described.

It is clear that both of these problems cannot be solved automatically. As such the component
system offers some very basic suport. (nevertheless, useful support)

v" The component system forbids thunks with an infinite execution time. As such we
can time the behavior of most of the thunks. If we work with a testset which
acompagnains a component, we can easily run the component on the target
architecture and get some measures for its execution time.

v The problem of message loops between one, two or more components can be
tackled by integrating all these interacting components into one single component
with its own testset and timing data.

Currently there are no loop components available, but as the projhect continues these will be
necessary.

32

SEESCOA PROJECT THE COMPONENT SYSTEM

Using The Component System

Now that we know how we can write components, its time to look at the Component System. The
Component System is the runtime environment in which components are executed. This means that the
component system takes care of scheduling messages, handling interrupts and distribution. Of course, its
almost quite impossible to deliver a component system which is small scaled and does everything you
want. This is the reason why most of the behavior of the component system has been made pluggable.
For example, we can instantiate a new scheduler and plug it into the component system, or we can add a
new message handler to print message traces between components while we are developing the
software. At the moment we push it into the embedded system we can choose smaller schedulers or
smaller message handlers.

A good example of this is the possibility of using a multi threaded scheduler on a large scaled system and
a single threaded scheduler on a small scaled embedded system. The component system allows us to
design an application regardiess of how many threads will be used when executing. If we run the
application on a larger embedded system we may find ourselves using 10 to 20 threads. But if we run the
same application of a small scaled system, we may find ourselves using only one thread. In the limit it is
even possible to eliminate all uses of threads from the Component System, without endangering the
correct execution of the program.

Now, let us have a look at how the component system can be instantiated with different plugins.

Running The Component System

The component system is written in Java, meaning that we always have to write a main program,
which instantiates the runtime component system and which boots up a number of standard
components. Initializing the component system should be the first thing done in the main loop of
the program.

It should be noted that there is only one instantiation of the component system which should be
initialized at the start of the program. This should be done by calling the init method on the
ComponentSystem class.

ComponentSystem.init () ;

After we have created the component system we have to assign a scheduler to it, which will be
used for the rest of the running time of the application. If you want to use a standardScheduler
with <x> number of threads, you can create such a scheduler and pass it to the
ComponentSystem.

33

SEESCOA PROJECT THE COMPONENT SYSTEM

ComponentSystem.acceptScheduler (new StandardScheduler (<x>));

Now, suppose we also want to add a new message handling strategy, which prints a line for every
message handled, we could plug in a TracingMessageHandler.

ComponentSystem.acceptMessageHandlerFactory (new TracingMessageHandler());

Finally, when all plugins have been installed, all we have to do is start the Component System, by
calling the start method.

ComponentSystem.start ()

When the component system has been started we can start adding some interrupt handlers, so
our application becomes reactive to the rest of the world. For example, suppose we have to add a
SocketinterruptHandler and a TiminglnterruptHandler. We can simply do this by creating these
components.

createComponent ("httpd.SocketInterruptHandler", "Socket8080") ;
"Socket8080"..Subscribe (<Observer:"HttpdDaemon">) ;

createComponent ("httpd.TimerInterruptHandler", "Timer") ;
"Timer"..Set (<Rate:new Long(5000)>);
"Timer"..Subscribe (<Observer:"ConduitRunner">) ;

The first two lines create a SocketInterrupthandler, so from now on our application will be able to
respond to incoming socket calls. This interrupt handler is from now on known as "Socket8080"
and the HttpdDaemon has been subscribed to this interrupt/socket. The last three lines create a
TimerInterruptHandler which will send a notification to the "ConduitRunner" every 5000 ms (or 5
S).

Of course before we can subscribe components like ConduitRunners and HttpdDaemons we
have to construct them, in exactly the same way. After initializing all the components the static
main method should finish. The complete logic of the program should be in components. The
main exists only for 'glueing/instantiaton’ purposes.

Now that we know how we integrate the component system into our application, let us have a
further look at the internals of the system.

34

SEESCOA PROJECT

THE COMPONENT SYSTEM

Message Flow

The complete component framework and the interaction between components is message driven.
Writing components in a event driven requires sometimes the ability to override the standard
message behavior. For example, if we want to glue some components together we definitely don't
want to compile stubs every time. On the other hand, the component systems standard message
delivery can be inadequate and may require new plugins to deliver messages. For example, if we
want to add ‘channels' or ‘connectors' between components.

This section explains how the standard message delivery works. We do this by showing a
message trace from component A, which is executing the message a and sends a message b to
component B. The explanation written trace explains what happens if no message handler is
installed. The MSC shows what happens if 2 mesagehandlers are installed. The code of the a
method in component A looks like:

public void al()

< S

{

"B, . b();

}

A.a() will call sendMessage upon itself
A.sendMessage() will call the component its MessageHandler

A.messageHandler.sendMessage() will be the component system if no special
messagehandlers are installed.

ComponentSystem.sendMessage() will call the Scheduler to schedule the message.

Whenever the scheduler decides to execute the message, it will look up the
component its messagehandler and call handleMessage.

B.messageHandler.handleMessage() will be the component system if no special
messagehandlers are installed, so

ComponentSystem.handleMessage() will call handleMessage upon the component

B.handleMessage() which has a standard behavior of invoking <invoke> upon itself
will call

B.b()

35

SEESCOA PROJECT THE COMPONENT SYSTEM

The MSC below is the same trace from executing the sendmessage to receiving the message at

component B if two messagehandlers are installed.

A.mh.mh.mh~
ComponentSystem ~
A A.mh A.mh.mh B.mh.mh.mh B.mh B.mh.mh
sendMessage(‘“B”,b)
D EE—
sendMessagei f1))
sendMessagei nl)
sendMessage(m)
handleMessage(mr
handleMessage(mr
B handleMessage(m)
handleMessage(m)

Message Handlers

Now, if we want to write our own message handlers we encounter a number of odd issues at first
sight. For example, do we want that all components have the same message handler or should
we be able to differentiate on this. It would be nice to write a debugging message handler which
keeps track of all messages send from component "A", "B" and "C", but not from the other
components. If would be very nice if we were able to write a message handler factory which
created the right message handler for the right component. Luckily this is possible.

Whenever we plug in a new Message Handler into the component system, we actually put in a
new messageHandlerFactory, which in its turn will or will not create a new MessageHandler
object for every component instantiated.

MessageHandler factories can be stacked so we can create a number of independent message

handlers for every component instantiated. The interface for the MessageHandler Factory looks
as follows:

36

b0

SEESCOA PROJECT THE COMPONENT SYSTEM

public interface MessageHandlerFactory
{MessageHandler createMessageHandler (
MessageHandler nxtHandler,
String componentname) ; }

All a messagehandler factory has to do is to create a messageHandler for the component with
name <componentname>. The freshly created MessageHandler should receive <nxtHandler> as
its message handler.

Now, this raises the question what a Message Handler should do:

public interface MessageHandler ({
public void handleMessage (Message m) throws Exception;
public void sendMessage (Message m) ; }

The handleMessage method should do whatever the message handler wants to do with the
message and afterwards deliver it to its own messagehandler (which he should normally know,
when creating the message handler a <nxthandler> field is passed, which can be stored, or
ignored). The sendMessage method can also plug in some debugging code, but should also send
the message to its own messageHandler.

This message handling system may look complicated, but this is only when creating components.
Once created, we have a direct chain of message handlers which call each other, without
unnecessary messagehandlers stored in between. In practice, message handlers are not too
hard to write. Below are three examples. The first example is the standard message handler (the
Component System itself), the second example shows how we can print a trace of messages and
the third one shows how we can time message traces.

The Standard Message Handller

Below is the code of the standard Message Handler. The standard Message Handler (which is
the Component System) is the endpoint of messages which are being send and is also the
endpoint of messages which should arrive.

public void handleMessage (Message m) throws Exception
{
m.getTarget () .handleMessage (m) ;
}

public void sendMessage (Message m)

{
scheduler.scheduleForExecution (m) ;

}

When sendMessage is called we will call the current scheduler and schedule the message for
execution. From now on it's the schedulers task to resurrect this message and deliver it by calling

37

SEESCOA PROJECT THE COMPONENT SYSTEM

handleMessage upon the component's messageHandler. Whenever handleMessage is called,
we will retrieve the destination of the message (getTarget()) and ask the target (the actual
component, not its messagehandler) to handle the message.

The Tracing Message Handler

Below is the first illustration how we can write a messagehandler which intercepts outgoing and
incoming messages. This messagehandler was designed to print the messages sent by a
component when handling a certain message. For example, if a component A, when handling the
message a sends messages B.b() en C.c() it will print

A.a() > B.b() + C.c()

This can be simply achieved by keeping track of which message is being handled by a certain
component and keeping track of all the messages sent out by that component while handling that
message. When the component returns from its messagehandling we print out the complete
sequence. #

So... handleMessage and sendMessage look like:

public void handleMessage (Message m) throws Exception
{
Component target=m.getTarget();
currentRule=target.getName ()+"."+m.getField ("Invoke")+" ->
messageHandler.handleMessage (m) ;
System.out.println(currentRule);
}
public void sendMessage (Message m)
{
if (currentRule!=null)
currentRule+=m.getField ("Target")+"."+m.getField ("Invoke")+" ";
messageHandler.sendMessage (m) ;

}

n.
’

HandleMessage:1 retrieves the target of the message. (the component we want to reach).
handleMessage:2 starts creating a rule which looks like “<targetname>.<targetinvocation> ->".
This rule will be expanded further by the next line. handleMessage:3 invokes its own
messageHandler in which directly or indirectly messages will be send. These messages are
caught in sendMessage and appended to the currentRule. Finally, in handleMessage:4 we print
out the rule we observed.

SendMessage:1 checks whether the rule is empty. This is needed because sometimes a
message can be send from within a component without being a response to another message.
This is the case for InterruptHandlers and the ComponentSystem. (the Init message for example).
SendMessage:2 expands the rule by appending the send message to the current production.

- Tt could be possible to print bit by bit the production on the screen, but this is barely readable if
we start the component system using a number of threads.

38

SEESCOA PROJECT THE COMPONENT SYSTEM

SendMessage:3 calls the next messageHandler to deliver the message.

These two things are quite simple, nevertheless, because we have to keep track of a rule for
every component handling a message, we need a separate message handler for every
component. Hence, we need to write a messageHandlerFactory which instantiates a
TracingMessageHandler.

public class TracingMessageHandler

implements MessageHandler, MessageHandlerFactory
{

String currentRule=null;

MessageHandler messageHandler=null;

public TracingMessageHandler ()

{

System.out.println("Installing Tracing Message Handlers");

}

public MessageHandler createMessageHandler (MessageHandler nxt, String name)

{

return new TracingMessageHandler (nxt, name);

}

protected TracingMessageHandler (MessageHandler mh, String name)

{
messageHandler=mh;
System.out.println("Constructed component "+name);

}

The tracingMessageHandler provides two functionalities at the same time. First these are the
actual MessageHandlers (methods handleMessage, sendMessage; the protected constructor
and the fields currentRule and messageHandler), second, it is the MessageHandlerFactory
(methods createMessageHandler and the public constructor)

The Timing Message Handler

We wrap up the description of messagehandlers by giving a bigger example of how we can time
messagehandling. The way this is done resembles the way the TracingMessageHandler works,
except that we put all the timings in one object. Of course, before we can do so we need an
abstraction which keeps track of time.

class TimingData
{
public long max=-1,min=-1,time=0, count=0;
public TimingData () {}
public void addTiming(long millis)
{
time+=millis;
count++;
if (min==-1) min=max=millis;
if (millis>max) max=millis;
if (millis<min) min=millis;
}
public double getAvg()
{
return (double)time/ (double)count;

}

39

SEESCOA PROJECT THE COMPONENT SYSTEM

/* returns [time/count] [min/avg/max]*/
public String toString()
{
return "["+time+"/"+count+"]"+
"["+min+", "+getAvg () +", "+max+"1";

}

The Timing MessageHandler itself is fairly obvious to write:

public class TimingMessageHandler
implements MessageHandler, MessageHandlerFactory

{

private MessageHandler mh;

static TreeMap timings=new TreeMap/() ;

public TimingMessageHandler ()

{

System.out.println("Installing Timing Message Handlers");

}

protected TimingMessageHandler (MessageHandler nxt)

{

mh=nxt;

}

public MessageHandler createMessageHandler (MessageHandler nxt, String name)

{

return new TimingMessageHandler (nxt);

}

public void handleMessage (Message m) throws Exception

{

long time = System.currentTimeMillis();

mh.handleMessage (m) ;

time = System.currentTimeMillis() - time;

addTiming (m, time) ;

}

public void sendMessage (Message m)

{

mh.sendMessage (m) ;

}

static public void addTiming(Message m, long millis)

{

TimingData td;

String thunk=
(String)m.getField("Target")+"."+
(String)m.getField("Invoke");

if (timings.containsKey (thunk))
td=(TimingData)timings.get (thunk) ;

else
{
td=new TimingData();
timings.put (thunk, td);

}
td.addTiming(millis);
}
static public void displayTimings()

{

Set entries=timings.entrySet();

Iterator it=entries.iterator();

Map.Entry entry;

while (it.hasNext())

{

entry=(Map.Entry)it.next ();
System.out.print (entry.getValue());
System.out.print (" ");
System.out.println(entry.getKey());
}

40

SEESCOA PROJECT THE COMPONENT SYSTEM

Schedulers

Regarding the internals of the component system there are two important things which are
pluggable. The first are the messageHandlers (explained in an earlier section). The second is the
scheduler which is also pluggable. As said before, the standard message flow of messages
between components starts by a component which calls sendMessage. This message is
propagated trough a set of messagehandlers and arrives finally at the component system, which
will call the scheduler to schedule the message for execution:

scheduler.scheduleForExecution (message) ;

This method should return immediately after scheduling the message for execution. This method
should never wait until the message has been processed.

At a certain moment in time the scheduler will decide to execute a message. He can do this by
calling the execute method upon the message.

message.execute ()

This method will only return when the message has been handled. The execute method will look
up the components message handler and call handleMessage upon it.

The component system, when started, will call start upon the scheduler. The scheduler start
method currently returns the execution, but it is possible/probable this will change in the future.

The component system is delivered with two schedulers. One illustrates how we can write a
stupid scheduler, which behaves incorrect. The second scheduler is a simple FIFO scheduler
which behaves correct. (as described in the section: Advanced Message Passing). We will now
ilustrate both schedulers since some of its classes may be reusable to implement a faster
scheduler.

Scheauler Provisions offered by the Component System
The standard schedulers work with a Queuing system with 1 inQ (messages scheduled for
execution) and a number of outQs (One queue with execution loop for every possible thread). The
run method decides which message (from the inQ) should be placed on which outQ. The queue
serves a a concurrency controlling mechanism (provider consumer). At one end the scheduler

puts in the messages, at the consumer end we execute the messages.

The Executionloop is obvious. It pops a message from its associated Q and it continues. If there is

4

SEESCOA PROJECT THE COMPONENT SYSTEM

no message available the Q will automatically make the execution loop wait.

class ExecutionLoop extends Thread
{
private MessageQueue mqueue;
public ExecutionLoop (MessageQueue q)
{
mqueue=dq;
start();
}
public void run()
{
while (true)
{
Message m=(Message)mqueue.pop () ;
m.execute () ;

}

The MessageQueue controls the concurrency which can be used to implement a synchronous
receive at consumer side and an asynchronous send at producer side. In other words: the add is
asynchronous and puts a message in the Q, while the pop blocks if there is no message
available.

public class MessageQueue
{
private boolean iswaiting=false;
private Message busywith=null;
private LinkedList 11 = new LinkedList();
/**
* returns whether the receiving end of the Q is busy with target.
* The Q asumes the consumer is busy as long as he doesn't wait for
* another message.
*/
public synchronized boolean isBusyWith(String target)
{
String t;
if (busywith==null) return false;
t=(String)busywith.getField("Target");
if (t.compareTo(target)==0) return true;
return false;
}
/**
* Loops over the Q to check whether the Q contains a message
* for target. Doesn't take the busy With into account.
*/
public synchronized boolean containsMessageFor (String target)
{
int s=1l.size(),1i;
for (i=0;i<s;i++)
{
Message m=(Message)ll.get (i) ;
String t=(String)m.getField("Target");
if (t.compareTo(target)==0) return true;
}
return false;
}
public synchronized void push (Message o)
{
11.addLast (0) ;
notify();
}

42

SEESCOA PROJECT THE COMPONENT SYSTEM

/**
* Blocking pop to retrieve the next message on the Q. If the Q is empty
* this method will block until a message is pushed upon the Q. This method
* is used to synchronize two threads to each other using a consumer
* producer like approach.
*/
public synchronized Message pop ()
{
if (1l.isEmpty())
{
iswaiting=true;
busywith=null;
wait () ;
iswaiting=false;
busywitg = (Message)ll.getFirst();
l1l.removeFirst () ;
return busywith;

}

StupidScheduler

The stupid scheduler is an illustration of a incorrect scheduler algorithm, which
nevertheless looks fine. So beware !

public class StupidScheduler extends StandardScheduler

{
public StupidScheduler (int tC)

{

super (tC) ;

}

public void run()

{

int currentout=0;

while (true)
{
Message m=(Message)inQ.pop();

outQs[currentout++].push(m);

currentout%=threadCount;

}

When a message is schedule for execution it is placed in the incoming Q. The run method pops a
message of the Q and continues and chooses the first outQ to deliver the message to. This looks
like a good working scheduler but it violates the semantics of the component system. The
component system should implement FIFO channels between components: If component A.a()
sends two messages B.b() and B.c() in this order. These messages should be delivered in this
order at component B. It is possible that this scheduler violates this constraint. Furthermore it is
also possible that a component runs concurrent with itself, which is also not allowed !

StandardScheauler

Below is the standard scheduler used by the component system. This scheduler preserves the fifo

43

SEESCOA PROJECT

THE COMPONENT SYSTEM

semantics between components. This code illustrates how difficult it is to write a correct
scheduler. Have a look at the synchronized outQ. This is absolutely necessary because between
the check whether the Q is busy with message m and the check whether message m is in the Q
can be a change of state of the Q, returning 'false' when he is in fact busy with the message m.

public class StandardScheduler extends Thread implements Scheduler

{

/**

*

*
*
*
*

*/

inQ zijn al de berichten die binnengekomen zijn bij het verwerken
van de huidige thunk (of thunks). Berichten verhuizen automatisch van
de inQ naar 1 van de outQ's. Een outQ is een Q die een bericht
klaarzet bij een bepaalde thread. ThreadCount is het aantal threads
bruikbaar om ComponentMessages af te handelen.

protected static MessageQueue inQ = new MessageQueue () ;
protected static MessageQueue[] outQs = null;

protected static int threadCount=0;

public StandardScheduler (int tC)

int i;

threadCount=tC;

outQs=new MessageQueue[threadCount];
for (i=0; i<threadCount;i++)

{
outQs[i]=new MessageQueue () ;
new ExecutionLoop (outQs[i]);

}

}

public void scheduleForExecution (Message m)

{
inQ.push (m) ;
}

public void run()

{
int currentout=0, emptyQnr,i;
while (true)

{
Message m=(Message)inQ.pop();
/* zoek de outQ die bezig of zich bezig gaat houden
* met target */
String target=(String)m.getField("Target");
for (i=0, emptyQnr=-1; i<threadCount;i++)
{
synchronized (outQs[i])
{
if (outQs[i].isBusyWith(target)
|| outQs[i].containsMessageFor (target))
{
outQs[i] .push (m);
break;
}
if (outQs[i].isEmpty()) emptyQOnr=ij;
}
}

if (i<threadCount) continue;
/* indien niemand er zich gaat mee bezig houden of er mee bezig is
* kiezen we iemand die niets te doen had
*/
if (emptyQnr>=0)
éthS[emptanr].push(m);
continue;

}
/* als er niemand niets te doen had pakken we maar iemand
*/
outQs[currentout++] .push(m) ;
if (currentout==threadCount) currentout=0;

44

SEESCOA PROJECT THE COMPONENT SYSTEM

EDF Scheduling and Timing contracts

This section describes a possible scheduler for the component system. The scheduler is priority based
and schedules messages based on their absolute deadlines. Messages with early deadlines are executed
first, as such it can be classified as an Earliest Deadline First scheduler.

The link to the component composition approach with its contracts is also shown, since it was already
stated that contracts would have a runtime meaning. It this appendix we only show Timing Contracts,
because they are related to the scheduling of messages.

These Timing Contracts are monitored by Message Handlers. Message handlers see the messages an
associated component sends and also the messages it receives.

This section presents two message handlers related to Timing Contracts: a
TimingContractRequiringPartyHandler and a TimingContractProvidingPartyHandler. These handlers are
responsible for monitoring the Timing Contracts between two components.

Timing Contracts

To schedule messages based on their deadlines extra information is needed. This extra
information comes from the Timing Contracts and is issued by using hidden (or extra) parameters.

Suppose one has two components (A and B) connected to each other. Component B offers an
operation o) to A. The specification of B specifies that o() will be processed in 20 msec. Suppose
now that A agrees with this specification. Since there is an agreement, a contract can be created
between both parties. This contract is called a Timing Contract.

Recall that such a Timing Contract consists out of 3* parameters, but for this example we will only
look at one possible parameter: maxEndTime. As such, the contract between A en B for
operation o() has a maxEndTime of 20 msec. Recall that this maxEndTime is relative to the
submission time of the message.

2. These were maxEndTime, minStartTime and maxStartTime. See also D 3.2.a.

45

SEESCOA PROJECT THE COMPONENT SYSTEM

provides:
o) in max 20 msec

o) 1 max
20 msec

requires:
o) in max 20 msec

The contract creation has to be performed by the component composition tool. Once the
application has been composed, the tool has to generate code for the support of these Timing
Contracts. Therefore we use a TimingContractRequiringPartyHandler which is connected to
Component A. There is also a TimingContractProvidingPartyHandler which is connected to
Component B. Both handlers share one object: an object representing the contract for operation
o() between A and B. In this object, the maxEndTime is stored and can be retrieved by both
handlers. Since the component A can communicate with different other components, through
different ports, it could be possible to have different Timing Contracts. Therefore every
TimingContract handler is coupled to one port of the component. As such if component A would
be connected to a third component C, also with a Timing Contract, component A will have two
TimingContract handlers.

As such, a Timing Contract handler is bound to a port. If there is more than one Timing Contract
for this port (ex. the interface of B consists of a second operation p() which also has a timing
specification), then the handler is also responsible for managing the contract relating to operation
p(). To summarize: there is one TimingContract handler per port, regardless of how much
operations are bound to this port. Lets take this last situation as our example:

46

SEESCOA PROJECT THE COMPONENT SYSTEM

provides:
o) in max 20 msec
p() in max 25 msec

'
& B
/ﬂ
=) (2 B
o) it max 0 in max
requires: 20 msec 30 msec
of) in max 20 msec
p) in max 30 mzec ! ¢!

At runtime, component A will have exactly one TimingContractRequiringPartyHandler and B will
have exactly one TimingContractProvidingPartyHandler. There will be two Timing Contract
objects: one for o() and one for p(). These two handlers reside in the Contract Layer, which is a
support layer for the managing and monitoring of contracts. This layer is on top of the component
system. See also the next figure.

- 4
of) in max
20 msec

k4

@on’cract

EequiringPartyHandler

TimingContract
ProvidingPartyHandler

p{iin max

30 msec

CONTRACT LAYER

COMPONENT 5YTSTEM

The TimingContractRequiringPartyHandler (abbreviated in the remainder of this document as

47

SEESCOA PROJECT THE COMPONENT SYSTEM

TCRPH) will intercept messages sent from A to B. These messages will be o() or p() messages.
When A sends one of these two messages, TCRPH will look if there is a contract for this
message. If this is the case, the maxEndTime of the message will be appended to the message
(by adding an extra field “TIMING.MAXENDTIME” to the message) and a value indicating the
maximum end time in msec. Another field will also be added: “TIMING.SUBMITTIME”. The
value of this field indicates the absolute time at which the message was received by TCRPH.
Remark that the value of TIMING.SUBMITTIME added to TIMING.MAXENDTIME equals the
absolute deadline of the message*.

There is also the possibility to add another extra field: “TIMING.PRIORITY”, but this is not used by
the Timing Contract message handlers.

After that, the message can be send: it is intercepted by the component system that sends it to
the scheduler. This scheduler is an EDF scheduler, which sorts messages based on their
absolute deadline. It executes the messages with the earliest deadlines first.

Once when the message from A is available for execution, the corresponding operation on B is
performed. After termination of the operation, the current time is calculated by the
TimingContractProvidingPartyHandler (abbreviated TCPPH). If the current time is greater than
the absolute deadline of the message, then the deadline was not reached. TCPPH could send
back a notification to TCPRH, but in the current implementation TCPPH only logs this information.

Principles of the scheduler

As explained in the previous section, the scheduler receives messages with two extra fields:
TIMING.MAXENDTIME and TIMING.SUBMITTIME. The TIMING.SUBMITTIME specifies at
which time the message was posted and the TIMING.MAXENDTIME how long the message is
allowed to take before the end of its execution. A third parameter TIMING.PRIORITY is also
allowed, but it is not yet used. As such, there is only “one” priority in our current implementation.

The scheduler is a priority-based earliest deadline first scheduler. It is a soft-realtime
scheduler that does not take into consideration priority inversion issues.

The number of priorities of the scheduler can be selected when the scheduler is created, but take
into consideration that there will be one thread per priority. Every thread will have a different
priority, o it makes no sense to declare more priorities than the available thread priorities. A later
extension of the scheduler could allow threads of equal priority.

These threads are called PriorityExecutionLoops and their purpose is to execute messages
that are posted in their associated EDFMessageQueue. This queue receives messages from the
EDFScheduler, which is the “root” class of the scheduler.

When the EDFScheduler receives a message, it first looks at the associated priority. This priority
tells in which queue the message has to be put. After that, the EDFMessageQueue is

*- Of course, this is only true if no time elapsed between the sending of the message by
component A and the receiving of the message by TCRPH.

48

SEESCOA PROJECT THE COMPONENT SYSTEM

responsible for sorting the message based on its absolute deadline: early deadlines are sorted at
the start, late deadlines at the end.

The PriorityExecutionLoop pulls out the message with the earliest deadline, executes it and pulls
the next message out of the queue, and so on.

The next figure represents the scheduler with three PriorityExecutionLoops, each with a specific
priority. ~ Every PriorityExecutionLoop gets messages from a local EDFMessageQueue.
Messages are put in the queue by the EDFScheduler.

INCOMmMIngG messages

EDFZcheduler

| T

PriorityExecutionLoop PriorityExecutionLoop PriorityExecutionLoop

priority 1 priority 2 priority 3

A scenario

Recall the example given earlier in this document: two components A and B are connected to
each other. B offers two operations to A: o) in 20 msec and p() in 25 msec. Component A
requires the execution of of) in 20 msec and the execution of p() in 30 msec, so two Timing
Contracts are made: maxEndTime of o) is 20 msec and maxEndTime of p() is 30 msec.

Since it is possible to plug new schedulers in the component system, we can plug in our own
EDFScheduler. Therefore the EDFScheduler has to implement the Scheduler® interface, which
consists out of two methods:

»- Every scheduler has to implement this interface.

49

SEESCOA PROJECT THE COMPONENT SYSTEM

v" public void start(), this methods starts the scheduling service. It can be used to
initialize the scheduler (for example: the creation of threads).

v" public void scheduleForExecution(Message m), this method is called by the
component system when the scheduler has to schedule an newly arrived message.

Once the EDFScheduler is plugged in, and started, the components A and B can be loaded and
initialised. Loading component A and component B also means that their associated message
handlers are created. In our case, one TCRPH and one TCPPH will be created. Also, two
contract objects will be created: one for o() and one for p(). These contract objects will be
attached to the created TCRPH and TCPPH.

Suppose that A wants to send o() and immediately thereafter also wants to send p(). When
sending o) the TCRPH annotates the message with TIMING.MAXENDTIME and
TIMING.SUBMITTIME and passes the message to the Component System. As a result the
Component System calls scheduleForExecution() on the scheduler. The scheduler puts this
message in a EDFMessageQueue.

Now A sends p(), and the whole process is repeated. The scheduler will put p() after the
message o() in the queue because the deadline of p() is after the deadline of o). Suppose now
that there are two other components C and D. Component C wants to send a message q() to D
with a Timing Contract of 10 msec, at the same time* A sends o() and p(). Then, when C posts
the message to the Component System, the scheduler will put this message before o() and p()
because its absolute deadline is earlier.

Possible Extensions

This scheduler performs a basic scheduling service based on priorities and deadlines. But there
are still some issues that can be investigated:

v"check which data structure is best for the scheduler. Messages have to be put
in a queue. If a list is chosen, the insertion of a message could take a while. If an
array is chosen, what happens when more messages arrive than the maximum
length of the array? And how can a message be inserted in an array if there is no
room between two cells? Currently a list is used. We are also developing an
EDFScheduler that uses a combination of an array and a list. The array is used for
early deadlines, the list is used for late deadlines.

v" reservation mechanism. The EDFScheduler only offers a best-effort service. An
extension would be the addition of a reservation mechanism: this would enable the
reservation of some “time slots” for a component. It would then be easier to

. “At the same time” means here: before the elapsing of 10 msec after A sends o(). If q() is send
after these 10 msecs, then the absolute deadline of q() will be later than the absolute deadline of o()
and as a result q() will be scheduled after o().

50

SEESCOA PROJECT

THE COMPONENT SYSTEM

guarantee a specific execution time.

poor time resolution of the JVM (and underlying system). a standard JVM on a
Windows PC has a resolution of 10 msec. This means that when a component A
sends a message on time t, then waits for 5 msec and then sends another message
on time t + 5, the component system could still see both messages as being sent at
the same time. This is due to the hardware/OS dependent precision of the java call
System.currentTimeMillis().

priority inversion. If the scheduler uses threads with different priorities it could be
possible for a lower priority thread to block a higher priority thread due to the locking
of system resources or objects. Priority inversion however will only occur frequently
if two components use extensively the same data structure, which could indicate a
design flaw.

call semantics of the component system. Recall the semantics of the component
system: when two components A and B directly send a message o() followed by a
message p(), these message have to arrive in order. A mechanism for supporting
this is not explicitly built into the scheduler, since p() can only be executed before o()
if the maxEndTime in the Timing Contract associated with p() is less than the
maxEndTime in the Timing Contract associated with o(). But this is a design error:
one cannot suppose o() to be executed before p() if the deadline of p() is before the
deadline of o()!

However, if an explicit checking is needed, this should be included in a Synchronization message
handler. This message handler has to control the correct arrival of messages. If one message is
out of order, this one has to be cached until the correct message is received. To know the correct
order of messages the Synchronization message handler could use the synchronization
specification of the component interface (level 3 of the component interface).

7~ System.currentTimeMillis() is a java method to retrieve the time (in milliseconds) elapsed since
midnight, January 1* 1970

51

SEESCOA PROJECT THE COMPONENT SYSTEM

The Component System & Embedded Software Development

In this section we will look at the opportunities offered by the SEESCOA component definition for
embedded software development. The discussion is split in two parts: the first part looks at the implications
for software development in general. The second part focuses on embedded software.

Opportunities for software development

A problem that often comes back, is the lack of component reuse over several projects or
development teams in a company. To make reuse possible, components have to be defined in a
formal way to eliminate misinterpretations. Without a clear definition, we cannot talk about reuse -
because we don't even know what is reused. That's why the definition is quite formal on some
points. Some parts of the definition have still to be filled in, for example the languages that will be
chosen to specify semantics and synchronization are still an open issue.

It is also important to notice that a clear definition doesn't imply the correct use of components. To
use and reuse components a method is needed. This method should enable the discovery of
reusable components. A general guiding rule is the high cohesion - low coupling rule. High
cohesion means that when one develops a component he should only put functionality in it that is
related. A component that does everything is not reusable. Low coupling is also needed between
the different components. If low coupling is not maintained, the involved component cannot be
reused without also deploying the other components to which it is coupled. This also breaks
reuse. To summarize, not only a good definition is needed, but also a good method.

So, what are the consequences of the component definition for the software development?

First of all, in our definition, a component has to be named and versioned. The naming and
versioning enables the unique referencing of components. The importance of this naming and
versioning is quite present for companies, since several people will develop components and
others will need to use them. 1t is clear that this should be done in a uniform way. The naming
and versioning also enables the storage of a component in a catalog; this catalog can then be
browsed when looking for a specific component.

A second argument in using a component system is the ability to use a very open meta level
architecture. As demonstrated throughout the tutorial, we can write glue component very easily.
Two reasons for this are 1) we don't wait for other components 2) we have a very explicit message
handling service, which can be tuned by glue components.

Opportunities for embedded software development

Besides the advantages shown above, the component system also has additional advantages for

52

SEESCOA PROJECT THE COMPONENT SYSTEM

embedded systems.

The component system helps in debugging the developed software: it can intercept the sent
messages between the components. This enables logging of messages or events together with
timing information, which can help the debug process. As stated previously, the component
system can also check if the components adhere to what is specified in their outside view.

Another advantage of using the asynchronous way the component system enforces is that it
allows different kinds of scheduling. For example, if we are targeting a small or mid scaled
embedded system we may be unable to use multiple threads. On such a system we can easily
ask the component system to run everything in one thread.”

Another advantage of using a component system is the shielding from the hardware. This
facilitates reuse of components, because they are not too dependent on hardware anymore.
Though, if a specific piece of hardware needs to be used, it could be encapsulated in a
component. When a component needs this hardware, it will communicate with the associated
component. In fact, only the interface is important. In some cases, when the hardware changes,
it is possible to retain the interface. In that way the dependency of other components on the
hardware is not broken.

- This is completely impossible if we would write the software in a process-based way instead of
an event based way.

53

SEESCOA PROJECT

THE COMPONENT SYSTEM

The Future of the Component System

This section contains some open ended issues regarding the component system. These are currently
implemented in a bad way or not implemented at all. Below is the list of things which should be changed in
future versions of the component system. The list is given in order of priority:

High Priority

v

A precompiler syntax for creating components. Together with this we need the
ability to pass parameters to the Init message.

The precompiler should be able to declare components extending from classes
which does not inherit from ‘Component'.

Put a transparent distribution layer into the component system.

The Component-System Component: It can be an advantage to do the interfacing
to the component system as if it were a component itself. This has the advantage
that whenever we work in a distributed environment the component system can
always be reached with the same identifier. Another advantage is the possibility of
tuning the component system with a larger, more manageable component system-
component, which will be removed in the production version of the system.

Introspection/Reification & Absorption: Introspection is needed whenever we are
faced with dynamic components that want to change their name at runtime, dynamic
components that look for their communication partner in the system and
components which change their behavior at runtime. The possibility for
remote/runtime uploads depends heavily on this feature. However it may not be
necessary to create a full reflective system in which we can absorb certain kinds of
primitives and workings into the component system.

Add Versioning to component blueprints
Investigate the possibilities of a semantic Time Constraint Checker with SSEL
Investigate the Scheduler of the KUL.

Investigate the possibilities of Record/Replay facilities Gent.

54

SEESCOA PROJECT

Low Priority

v

v

THE COMPONENT SYSTEM

Some glue code syntax. (Transformers, Grouping components and others)

Declaring the used message fields in a thunks header. This allows more
straightforward rule-generation.

The precompiler should output some nice indented code, not the flat line format it
USES NOW.

Profile it on the target architecture. Together with this we need to remove the
TreeMap from the source because Kaffe has a wrong implementation of this
standard Java class.

Discard messages with timestamps

Somebody will have to put in runtime support for contracts (see the design related
documents)

55

SEESCOA PROJECT THE COMPONENT SYSTEM

References

[Szyperski]

Component Software, Addison-Wesley/ACM Press, 1997
[Beugnard, Jezequel, Plouzeau, Watkins]

Making Components Contract Aware, Computer (IEEE), 1999
[Della Torra Cicalese, Rotenstreich]

Behavioral Specification of Distributed Software Component Interfaces, Computer (IEEE), 1999
[Francis D'Souza, Cameron Wills]

Objects, Components, and Frameworks with UML: The Catalysis Approach, Addison-Wesley
[Van Belle, Verelst]

The mobile multi-agent system Cborg, http:/progwww.vub.ac.be/poolresearch/Chorg/

[Noble]
Three features for Component Frameworks, WCOP '99
[Terzis, Nixon]
Component Trading: The basis for a Component-Oriented Development Framework, WCOP '99
[Dong, Alencar, Cowan]
Correct composition of Design Components, WCOP '99
[Sametinger]
Software Engineering with Reusable Components, Springer, 1997
[Keller, Hoelzle]
Binary Component adaptation, ECOOP '98
[Mezini, Lieberherr]
Adaptive Plug-and-Play Components for Evolutionary Software Development, Object-Oriented
Programming Systems, Languages and Applications Conference, SIGPLAN Notices vol 33, nr
10, 1998
[Cornwell]
Reusable Component Engineering for Hard Real-Time Systems, PhD thesis, University of York,
UK, 1998
[Rastofer]
A Component Model for Distributed Embedded Real-Time Systems, GCSE '99 Young
Researchers Workshop
[Nierstrasz, Tsichritzis]
Object Oriented Software Composition, Prentice Hall, 1995
[Szyperski]
Components and Objects Together, Software Development Magazine, May 1999

56

http://progwww.vub.ac.be/poolresearch/Cborg/

