(define (sum term a next b) (define (iter acc p) (if (> p b) acc (iter (+ acc (term p)) (next p)))) (iter 0 a)) (define (simp-int f a b n) (let* ((h (/ (- b a) n)) (y (lambda (k) (f (+ a (* k h))))) (term (lambda (k) (cond ((= k 0) (f a)) ((= k n) (f b)) ((even? k) (* 2 (y k))) (else (* 4 (y k)))))) (next (lambda (x) (+ x 1)))) (/ (* h (sum term 0 next n)) 3)))