

STWW-Programma

SEESCOA:
Software Engineering for Embedded Systems

using a Component-Oriented Approach

 Component-Oriented Design of
Common Test Case

Deliverable D3.5

02 October 2001

 2

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

Contents

CONTENTS ..2

1. INTRODUCTION ..5

2. EXISTING CAMERA SURVEILLANCE SYSTEMS ...7

2.1. First systems..7

2.2. Analog systems ...7

2.3. Hybrid systems ...7

2.4. Digital systems ..8

2.5. Current status...9

Intermezzo: Specialized Surveillance...9

3. REQUIREMENTS...11

3.1. Description ..11

3.2. Detailed requirements ...12

4. OVERVIEW...16

4.1. Elements of the Camera Surveillance System ...16

4.2. User Interface ...17

4.3. Core services ...18

5. USE CASES ...19

5.1 Manage Users ..19
5.1.1 Manage Users..19
5.1.2 Add User ...20
5.1.3 Delete User..21
5.1.4 Change User Settings..22

5.2 Camera Plugin Manager..23
5.2.1 Manage Bounds Settings..23
5.2.2 Add Coordination Plug...24

5.3 Camera Plugin Management ..25
5.3.1 Manage Camera..25
5.3.2 Zoom in/out...26
5.3.3 Set Hotspot..27

 3

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

5.3.4 Change Frame Rate ..28
5.3.5 Set Image Compression..29
5.3.6 Store Settings ..29
5.3.7 Load Stored Settings...30

5.4 Storage viewing..31
5.4.1 View Events ..31

5.5 Task analysis using ConcurTaskTrees ..32

6. ARCHITECTURE ...37

6.1. Overview of the SCSS...37

6.2. Description of the SCSS components ...39
6.2.1. Controller..40
6.2.2. Camera ...40
6.2.3. Zoom Behaviour ..44
6.2.4. Mosaic ..45
6.2.5. Storage..45
6.2.6. Motion Detection...47
6.2.7. Client ..51
6.2.8. User Interface...52

6.3. Example...54
6.3.1. Cameras..55
6.3.2. Storage..56
6.3.3. Motion Detection...57
6.3.4. Mosaic ..58
6.3.5. Client and UI Renderer component ..59

7. COMPONENT SPECIFICATION...61

7.1. Controller Component ..62
7.1.1. Description ...62
7.1.2. Use Cases ...62
7.1.3. Interfaces ..64
7.1.4. Message Traces..66

7.2. Zoom Behaviour Component...68
7.2.1. Description ...68
7.2.2. Use Cases ...68
7.2.3. Interfaces ..68
7.2.4. Example Message Sequences..70

7.3. Image Generating Components...72
7.3.1. Introduction..72
7.3.2. The Camera Component..73
7.3.3. The VideoStreamDecoder Component ..78
7.3.4. The Prioritizer Component..80
7.3.5. The Delay Component...81
7.3.6. The Switch Component...82
7.3.7. The Mosaic Component ..83
Example Message Sequence Charts..83

7.4. Storage and Storage Controller Components..87
7.4.1. Component StorageController ..87

 4

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

7.4.2. Component Storage ...90
7.4.3. Use Cases ...92
7.4.4. MSCs..95

7.5. Camera Motion Detection Component...99
7.5.1. Introduction on Motion Detection...99
7.5.2. Requirements for the Camera Motion Detection Component...101
7.5.3. Use cases ..102
7.5.4. Camera MD Specification...104

7.6. UI Renderer Component ..108
7.6.1 Requirements of the User Interface..108
7.6.2 User Interface Components..112
7.6.3 Palm mobile device related User Interfaces ...118
7.6.4 Additional listings..121

7.7. Client Component..125

REFERENCES ...126

 5

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

1. Introduction

In this deliverable we discuss the analysis and design of the SEESCOA
test case (SEESCOA camera surveillance system). The main purpose of
this test case is the validation of the SEESCOA methodology and
technologies: the design is based on the proposed component based
approach (see [14]) and associated methodology. It also includes results
from other work packages of the project, like the work package on user
interfaces. Since the work described in this deliverable is mainly design
oriented, not much will be said about debugging. This will however
become important in the months to come, when the test case will be
implemented and tested.

Before reading further it is recommended to read the deliverable D1.3
titled Common Test Case (see [1]); it gives a general description of the
SEESCOA camera surveillance system and the overall (physical)
architecture.

In chapter 2, some existing camera surveillance systems are described,
with special attention for next generation systems. Chapter 3 prescribes
the general requirements for the SEESCOA camera surveillance system1,
without being constrained to a particular design. Chapter 4 gives an
overview of the system and terminology. Chapter 5 discusses the user
interaction with the system by mains of use cases. Chapter 6 deals with
the architecture of the system and the interactions that occur in this
architecture. In Chapter 7 the core components will be described in detail.

The work in this deliverable is the result of 6 meetings with all university
partners:

Meeting July 16th 2001 (at RUG): discussion on existing systems, goals
of the test case, the requirements and definition of an initial architecture.

Meeting July 23rd 2001 (at VUB): overview of use cases and interaction
scenarios, refinement of the architecture: defining important components.

Meeting August 2nd 2001 (at LUC): definition of services and plug-ins,
user interface component, further refinement of architecture in
components: every partner works out the specification of one or more
components.

Meeting August 16th 2001 (at KULeuven): discussion on the different
component specifications made by the partners, determination of the
responsabilities of the controller and the user interface. Partners further
refine component specifications.

1 This will be abbreviated SCSS in the rest of the document.

 6

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

Meeting September 5th 2001 (at RUG): discussion on refined component
specifications, integration of all components into one system,
synchronizing component specifications. Discussion on the format and
contents of the deliverable for the test case design.

Meeting September 20th 2001 (@ LUC): final discussion on the format
and contents of the test case design deliverable.

 7

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

2. Existing Camera Surveillance Systems

Before we explain the requirements of the SCSS, it is important to have a
look at existing surveillance systems. Doing so, will aid us to formulate the
requirements for the SCSS. This chapter is partly based on material
found in [2] and descriptions of existing commercial systems and projects.

The automatisation of the surveillance process and the reduction of video
data have become the main drivers for the advances in video surveillance
technology. However, new requirements are emerging: advanced motion
detection, interoperating camera’s, encryption and authorization, network
integration, …

2.1. First systems

The very first systems were quite primitive but also very simple to operate:
they made use of a photographic film and took photographs of the
environment at certain moments in time (time-triggered systems). An
important property of such a system was the fact that it was unattended:
the film was manually collected and reviewed by inspectors. These
inspectors had to review the pictures by hand which caused this
surveillance process to be very time consuming.

Also, the more cameras a particular site needed, the more complex this
became. A more automated (re)view process was necessary.

2.2. Analog systems

A new step in surveillance technology was the use of analog cameras and
recording devices. Analog surveillance systems are still common today
and the technology that has been developed for it is quite advanced.
Analog systems are often assisted systems, this means that a guard can
be watching the images in real time.

The analog output of camera’s can also be recorded on tape, but this is
not necessarily always the case. Some analog systems have extra
functionality built into them: images can be multiplexed on the screen or
tape, camera’s can be attached to particular physical triggers or time
triggers, … However, an analog system has no image processing
intelligence; a guard is still needed to detect anomalies.

2.3. Hybrid systems

Thanks to advancements in digital technology, new types of surveillance
systems were born. They were not fully digital, but processed the output
of several analog camera’s and stored this output in a digital format.

 8

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

Often, a hybrid system consists of some nodes (processing nodes) that
can accept 8 to 16 analog camera inputs and perform some basic motion
detection processing on these video inputs. When motion is detected, the
system can start recording the images or raise some alarm or any other
trigger. Other nodes of the hybrid system are recording nodes: they
record the digital output of processing nodes or analog output of the
camera’s into a digital compressed format. Some commercial systems
(see [3]) store the new images (eg. last 24 hours) on a hard disk, while old
images are moved to a digital tape.

Hybrid systems can be accessed via workstations and such that more
advanced operations are becoming possible. Adding motion detection
and digital compression functionality automates the surveillance process
and also reduces the amount of video data to store.

One of the advantages of a hybrid system is the fact that it enables users
to move from their old analog systems to digital systems without having to
invest extensively in advanced surveillance (they can still use their existing
analog camera’s and cabling). Examples of existing hybrid systems can
be found in [4] and [5].

2.4. Digital systems

The next generation of camera surveillance sytems is fully digital. The
cameras produce digital video output and have processing facilities. Also,
to enable remote monitoring, they can be attached to a network
(Ethernet).

The processing facilities of a camera are used to perform some advanced
motion detection processing (see the part on motion detection in chapter 7
for more information about this), encoding of the images, integration with
other camera’s and sensors in the environment, … This extra intelligence
enables:

• the further automatization of the surveillance process (eg. motion
detection, automatic generation of reports, alarm triggering,…).

• inter-camera cooperation.

• a reduction in the amount of video data that is transmitted or stored
(eg. record images when motion is detected, advanced encoding and
compression algorithms, …).

• remote operation and monitoring.

The fact that cameras are becoming more intelligent puts also some
requirements on the hardware: a processor, memory and a network
interface are needed. But, the price tag of the hardware may not be too
high (since the price of a camera will also influence the total price of the

 9

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

system) and the energy consumption is also an issue. This is especially
the case if the systems are completely or even partially battery operated.

2.5. Current status

The fully digital surveillance system is clearly the system of tomorrow, but
some issues are still open. There exist some hardware issues, since
these systems need processing power and network connectivity. The
hardware may not be expensive and its energy consumption must be
limited. There also exist some software issues, especially in the field of
image processing. Current image processing algorithms are still quite
basic or very specific (see the intermezzo Specialized Surveillance).
Advanced motion detection algorithms are still a research topic. Examples
of issues that are being looked at today are the detection of persons and
objects ([6]), and the combination of several inputs, like sound and images
for assisting in the surveillance process ([7]).

Most systems today are analog or hybrid systems. The hybrid systems
can perform some processing on the images, but this processing is often
constrained to centralized basic motion detection.

However, there exist a limited number of systems that can be categorized
as fully digital (see [8] and [9]) with some available processing power.

Intermezzo: Specialized Surveillance

Today, there exist some surveillance systems that can be categorized as
‘intelligent’. The image processing that is performed by these systems
goes beyond the standard motion detection: it detects particular actions or
situations. The drawback of these systems is the fact that they are highly
specialized and centralized. They are not usable for general purpose
surveillance, but can eventually be integrated in an existing surveillance
system.

This section discusses two existing systems: an airlock surveillance
system [10] and a fire detection system [11].

An airlock is a small room that is used for securing the access between
two rooms: it gives access from the outside world to a secured area.
Airlocks are often used in buildings for employee access, airports,
banks,… Access to an airlock can be controlled by some device like
biometric or magnetic card locks. The airlock video surveillance system
can be used in combination with these access control devices. The
airlock system detects if two persons are in the same room, if two doors
are opened at the same time, if the person stays too long or even if the
person wants to touch the camera. To be useful, the system has some
installation guidelines: the airlock room must have contrasted and
patterned walls (horizontal lines on the walls) and floor (chessboard
pattern), it is also recommended to use neon tubes installed in a particular

 10

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

way to avoid shadows. It is clear that this type of system is very
specialized and only useful in specific situations.

Another system, is a fire and smoke detection surveillance system. This
system is often used in trafic situations (tunnels, car parks,…) or industrial
applications. It can be connected to existing cameras and makes use of
an image processing algorithm that is specialized for fire and smoke
detection.

 11

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

3. Requirements

This chapter describes the requirements for the SEESCOA Camera
Surveillance System. Our purpose is to build a fully extensible digital
system, with the ability to put (a part of the) processing activities on the
camera.

3.1. Description

The SCSS offers a distributed architecture in which digital cameras can be
put and interoperate with other cameras and nodes in the system. These
cameras deliver their images to other nodes in a compressed digital
format. The nodes, in turn, process the video data and can eventually
control other parts of the system. At first, the system offers basic
functionalities like storage and motion detection processing. However,
new functionalities can be added easily over time.

To be more specific, the system that we are specifying has following
characteristics:

• Digital: the system is fully digital. This is necessary if complex
computations have to be performed on the image data.

• Local intelligence: cameras are not seen as passive image
generating devices; they can also have processing possibilities. This
enables the local processing2 of images.

• Services: the system also offers services to the user. Some of these
services are quite important, like the storage of images and the
automatic monitoring and alarm reporting.

• Networked: all cameras are connected to a network. This means they
can connect to each other and other nodes in the system. As a result,
they can coordinate their actions (eg. coordinated zooming, send
images (for recording), …)

• Dynamic: cameras can be disabled, or services can disappear. The
SCSS must be able to handle changes in its environment.

• Evolvable: cameras can be added, services installed and updates of
functionality must be possible.

2 “Processing” has a wide meaning: motion detection, encoding, compression, … are all processing
activities

 12

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

3.2. Detailed requirements

The characteristics mentioned on the previous page are quite general. In
what follows, we will describe the specification of the SCSS in more detail.
This specification describes the basic requirements that must be met by
the system.

� Connectivity

o The cameras and the system must make use of a standard
network: Ethernet (IP). This will reduce the overall
installation cost of the system.

o All nodes in the system make use of the component system
[12] for their interaction.

o Connecting a camera is straightforward and uniform.

� Camera3

o A camera must be able to perform local processing. Some
cameras could have more or less resources than other
cameras, but every camera must be able to run a
component system instance.

o The software of a camera can be updated through the
network.

o Extra functionality can be added to the camera through the
network. The ability to execute this functionality is
dependend on the amount of local processing power.

o A camera can deliver its images on the network to other
parts of the system.

o A camera is fully or partially (remote) controllable by other
parts of the system.

o A camera can support multiple video formats.

o If a camera uses a new video format, then support for this
new format must be added easily. Old parts of the system
must be able to process the new video format without
changes. This ensures the evolvability of the system.

o Cameras can be inserted and used uniformly by the system
(including new and old parts of the system).

3 Note that it is dangerous to put heavy requirements on the camera’s, since this will increase the cost of
these camera’s. The requirements mentioned here are the minimal requirements for a camera.

 13

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

o Cameras can offer a user interface through which they can
be controlled.

� Services

o Services can be added uniformly.

o Services can run in a distributed manner: on the cameras
and/or other nodes.

o Services can be relocated if necessary.

o Basic services that have to be offered:

� Storage: images and events (like alarms) can be
stored and retrieved.

� Motion Detection: images of one or more cameras
can be analysed in real-time for motion detection.

� Zoom Control: cameras can coordinate their
zooming activities.

o Services can offer a user interface through which they can
be controlled.

� Users

o Users have access to the system based on their access
rights. Basically, a distinction between administrators and
operators has to be made.

o Administrators are able to:

� perform system management:

• add/remove/configure the basic properties
and infrastructure of the system.

� perform user management:

• add/remove/configure user information.

� perform camera management:

• add/remove/configure camera’s in the
system.

� perform services management:

• add/remove/configure services.

 14

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

� all activities that operators are allowed to do.

o Operators are able to:

� perform allowed4 camera configuration.

� perform allowed services configuration.

� view allowed camera and services output.

� Dynamism and fault tolerance

o Cameras and services can be added, configured and
removed while the system is running.

o Interactions can occur at any time, between any cameras
and services.

o System functionality can be distributed over the entire
network.

o It must be possible to let the system continue5 its operations
in case of network, node and camera failures (best effort
continuation).

o The SCSS provides a way for accessing and browsing the
cameras and services available in the system (like a
directory service) at running time.

o Support for remote updates of parts of the system.

� Security

o no requirements yet (security is important, but will not be
added in a first version of the case).

� Interface

o The interface should be automatically adaptable to the
visualisation device6 and user profile.

o It should be possible to change, extend or model the
interface dynamically (integration of new services offering
an interface will allow that interface to be directly available
and usable).

4 An action is allowed if the access rights of the operator have been set accordingly by an administrator.
5 This is also based on the network infrastructure, installation and configuration of the system.
6 Visualisation can be done on a workstation but also on other types of devices with limited screen
capabilities.

 15

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

The requirements that were described on the previous pages are general
requirements and will be worked out in the remainder of this document.

As will become clear in the next chapter and chapter 6, the SEESCOA
Camera Surveillance System will consist of several components. All
these components will also have some requirements associated to them.
These requirements are discussed in detail in chapter 7.

 16

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

4. Overview

This chapter describes the core concepts of the SCSS. It also shows a
high-level view of the system architecture. This view is necessary to
understand the use cases in chapter 5. The architecture will be futher
elaborated in chapter 6. We will also define some common terms used in
this deliverable, to eliminate misunderstandings.

4.1. Elements of the Camera Surveillance System

Figure 1 shows an overview of the architecture. It consists of a controller,
cameras, services and user interfaces:

• Controller: the controller is responsible for the core management of
the system. Its responsabilities are constrained to the strict minimum:

o Detection of new/removed cameras and services.

o Notification of new/removed cameras and services.

o Upload of functionality to network nodes (eg. the camera
hardware).

In fact its main task is to act like a lightweight directory service.

• Camera: represents an image generating device7. The camera can
also be more or less controlled: zoom, focus, light balance, …
depending on the properties of the hardware.

• Service: represents a particular functionality added to the camera
surveillance system. A service can consist of other services that work
together. Some services will be image processing related (like the
motion detection service), while other services will have an
administrative nature.

• User Interface: represents an interface for access to the system by
human users. Different ‘types’ of access exist: viewing of outputs from
particular cameras, retrieving stored image sequences, configuration
of the system, … The representation of a user interface is not
constrained to a workstation; it is also viewable on other devices like
PDA’s.

7 Here, the camera has to be seen as a real-world camera: an image generating device. Wether or not this
camera can execute code does not matter at this moment.

 17

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

Figure 1: overview of the SEESCOA Camera Surveillance System

 Figure 1: overview of the SCSS

4.2. User Interface

For human operators to have access to the surveillance system, it is
important to provide these with a suitable user interface. Besides the fact
the system is "living" on itself (camera's and services interact directly with
each other), there has to be a way for users to operate the system. Some
user tasks are: managing and configuring the system, view camera
output, browse the storage,... All these services require user interaction
and therefore there should be a user interface offering the functionality to
the user.

The user interface is not bound to a particular type of device. This ensures
that the SCSS is controllable from a standard desktop computer, the
Internet or by using portable devices. Also, user interaction is not
necessarily done using a graphical interface, speech or other non-
traditional interaction modalities can also be an alternative.

The basic idea is that each service (this can include a surveillance camera
for example) which offers functionality for a human user to interact with,
has to provide an abstract description of the user interface. This abstract
user interface is then interpreted on a client and visualized in a way that is
dependend on the available resources and the constraints of that client. A
client can reside on different kinds of devices: a desktop PC, PDA,
Internet client via Web Browser, Mobile Phone,...

Controller

Camera Service
Camera Service

User Interface
Workstation

User Interface PDA …

 18

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

4.3. Core services

Till now, everything that was a camera and not a part of the SCSS, was
defined as a service. There exist however different kinds of services:

• Some services are related to image processing tasks: they perform
some algorithmic processing on images to extract information. A
popular image processing functionality in a camera surveillance
system is of course the automatic detection of motion in a sequence of
images. This automatic motion detection can help a guard in his
surveillance job, but image detection can also help in constraining the
needed bandwidth for recording images by only recording images
when motion has been detected. As a consequence, we include a
motion detection service in the SCSS. The SCSS will also include a
Zoom Control service or Zoom Behaviour service. This service is
responsible for the management of zoom activities between a set of
camera’s.

• Other services are used to store image sequences. Most camera
surveillance systems do have the possibility to store images on tape
and/or8 on disk. A storage service will also be provided by the SCSS.
We extend this storage concept to the storage of events that occur in
the CSS. An event is a particular occurrence of some activity that is of
importance to an operator or administrator. In the case of motion
detection, we could have a motion detected event. The storage is then
responsible for storing this event, eventually with some information
associated with it (time of the event, room where the motion was
detected, the image sequence that contains the motion information,
and so on).

• Services for administration of the system. Administration of a system
is also an important aspect of a camera surveillance system. It
concerns the management of users (administrators and operators) and
their access rights. It also concerns the configuration of camera’s and
services.

The first two services mentioned above are part of the SCSS’s core. The
third service (user administration) is currently not a part of the SCSS.

It is possible to add or remove additional services to the system. Because
of this extension capability of the system, a service is also called a plugin
or a coordinator.

8 Digital systems often store fresh image sequences (eg. last 24 hours of recording) on a disk for fast
retrieval, while older image sequences (eg. last 7 days) are stored on tape, for slower retrieval. See [3].

 19

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

5. Use cases

This chapter describes how a user would interact with the SEESCOA
Camera Surveillance System. It does not describe a particular interface to
use, it only describes the interactions between a user and the system.
These interactions can be implemented in various ways (by means of a
GUI, speech renderer and recognition interface, textual interface, …).

To get a first impression of how the user interface looks we have chosen
to do a Use Case design and make paper mockups related to the use
cases. Some use cases are followed by an illustration of a possible user
interface. To give an impression of how this might look on different device
types some images are palm mobile device based.

The format used for describing the interactions is based on the format
defined in [13].

5.1 Manage Users

5.1.1 Manage Users

Use Case Manage Users

Actors Administrators

Purpose Manage the user list for the camera system

 Actor Action System Response

1. The administrator has
indicated the need to manage
the user list

2. The system shows a list
with managing options

3. The administrator selects
the add user option

4. The system switches to the
add user use case

Alternative

3. The administrator selects
the change user option

4. The system switches to the
change user use case

 20

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

Alternative

3. The administrator selects
the delete user option

4. The system switches to the
delete user use case

Alternative

3. The administrator selects
the quit option

4. The system switches to . . .
(stop)

Figure 2: a possible desktop version for user management

5.1.2 Add User

Use Case Add User

Actors Administrator

Purpose Add a new user to the camera system user list

 Actor Action System Response

1. The administrator has
indicated the need to add a
user to the list

2. The system shows a screen
asking for information about
the new user

 21

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

3. The administrator enters all
user data

4. The system saves all the
information concerning this
user

 5.the system asks if another
user should be added

6. The administrator wants to
add another user

7. The systems starts again
with 2.

Alternative

6. The administrator does not
want to add another user

7. The system returns to the
user managing use case

5.1.3 Delete User

Use Case Delete User

Actors Administrator

Purpose Remove an existing user to the camera system user list

 Actor Action System Response

1. The administrator has
indicated the need to remove
a user from the list

2. The system shows the list
of current users

3. The administrator selects
the user to be deleted from the
list

4. The system removes all
data concerning this user

 5. The system asks if another
user should be deleted

6. The administrator wants to
delete another user

7. The systems starts again
with 2.

 22

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

Alternative

6. The administrator does not
want to delete another user

7. The system returns to the
user managing use case

5.1.4 Change User Settings

Use Case Change User Settings

Actors Administrator

Purpose Change the settings of a user

 Actor Action System Response

1. The administrator has
indicated the need to change
user data

2. The system shows the list
of current users

3. The administrator selects
the user the data should be
changed for

4. The system shows the
requested user data

5. The administrator changes
the user data

6. The system saves all data
concerning this user

 7. The system asks if another
users data should be changed

8. The administrator wants to
change another users data

9. The systems starts again
with 2.

Alternative

8. The administrator does not
want to change another users
data

9. The system returns to the
user managing use case

 23

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

Figure 3: a desktop version to enter user settings

5.2 Camera Plugin Manager

5.2.1 Manage Bounds Settings

Use Case Manage Bounds Settings

Actors Administrator

Purpose Manage the bounds settings for the different camera options

 Actor Action System Response

1. The administrator has
indicated the need to manage
the bounds settings for the
camera

2. The system shows the
bounds setting interface

3. The administrator sets the
wanted bounds

4. The system saves the
changed data for the bounds

 5. The system returns to the
main interface …

 24

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

Alternative

3. The administrator does not
want to add another plug

4. The system returns to the
main interface …

5.2.2 Add Coordination Plug

Use Case Add Coordination Plug

Actors Administrator

Purpose Add a plug that coordinates the focus of a camera

 Actor Action System Response

1. The administrator has
indicated the need to add a
control plug

2. The system shows the list
of plugs

3. The administrator selects
the wanted plug

4. The system installs the
selected plug

 5. The system asks if another
plug should be selected

6. The administrator wants to
add another plug

7. The systems starts again
with 2

Alternative

6. The administrator does not
want to add another plug

7. The system returns to the
main interface …

 25

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

5.3 Camera Plugin Management

5.3.1 Manage Camera

Use Case Manage Camera

Actors Administrator, operator

Purpose Control a camera

 Actor Action System Response

1. The administrator/operator
has indicated the need to
manage the camera

2. The system shows a list
with managing options

3. The administrator/operator
selects the zoom option

4. The system switches to the
zoom use case

Alternative

3. The administrator/operator
selects the change frame rate
option

4. The system switches to the
change frame rate use case

Alternative

3. The administrator/operator
selects the set image
compression option

4. The system switches to the
set image compression use
case

Alternative

3. The administrator/operator
selects the set hotspot option

4. The system switches to the
set hotspot use case

 26

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

Alternative

3. The administrator/operator
selects the settings option

4. The system switches to the
settings use case

Alternative

3. The administrator/operator
selects the quit option

4. The system switches to . . .
(stop)

5.3.2 Zoom in/out

Use Case Zoom in/out

Actors Administrator, operator

Purpose Manipulate the zoom-function of a camera

 Actor Action System Response

1. The administrator/operator
has indicated the need to
zoom the camera

2. The system shows the
zoom interface

3. The administrator/operator
makes the wanted zoom
settings

4. The system adjusts the
camera to the wanted settings

Alternative

3. The administrator/operator
does not want to change the
zoom settings

4. The system returns to the
camera managing use case

 27

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

Figure 4: a possible zoom user interface on a Palm

5.3.3 Set Hotspot9

Use Case Set Hotspot

Actors Administrator, operator

Purpose Indicate an area of extra importance on the total camera
surveillance view

 Actor Action System Response

1. The administrator/operator
has indicated the need to set
the hotspot

2. The system shows the set
hotspot interface

3. The administrator/operator
makes the wanted hotspot
settings

4. The system adjusts the
camera to the wanted settings

Alternative

3. The administrator/operator
does not want to change the
hotspot settings

4. The system returns to the
camera managing use case

9 For a definition of hotspot see 7.5.1.

 28

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

Figure 5: the stylus can be used to select a hotspot region

5.3.4 Change Frame Rate

Use Case Change Frame Rate

Actors Administrator, operator

Purpose Change the frame rate of a camera

 Actor Action System Response

1. The administrator/operator
has indicated the need to
change the frame rate

2. The system shows the
change frame rate interface

3. The administrator/operator
makes the desired frame rate
changes

4. The system adjusts the
camera to the desired
changes

Alternative

3. The administrator/operator
does not want to change the
frame rates

4. The system returns to the
camera managing use case

 29

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

Figure 6: palm user interface to change the frame rate

5.3.5 Set Image Compression

Use Case Set Image Compression

Actors Administrator, operator

Purpose Select the image compression settings for the video stream
or camera snapshots

 Actor Action System Response

1. The administrator/operator
has indicated the need to set
the image compression

2. The system shows the
image compression interface

3. The administrator/operator
makes the wanted image
compression settings

4. The system adjusts the
camera to the wanted settings

Alternative

3. The administrator/operator
does not want to change the
image compression settings

4. The system returns to the
camera managing use case

5.3.6 Store Settings

Use Case Store Settings

Actors Administrator, operator

 30

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

Purpose Look at the camera settings and store them

 Actor Action System Response

1. The administrator/operator
has indicated the need to
retrieve or store the camera
settings

2. The system shows the
camera settings interface

3. The administrator/operator
stores the camera settings

4. The system saves the
camera settings

Alternative

3. The administrator/operator
does not want to change the
camera settings

4. The system returns to the
camera managing use case

5.3.7 Load Stored Settings

Use Case Load Stored Settings

Actors Administrator, operator

Purpose Loads previously stored settings

 Actor Action System Response

1. The administrator/operator
has indicated the need to load
stored camera settings

2. The system lists the
previously stored settings

3. The administrator/operator
selects a listed camera setting

4. The system loads the
selected camera settings

 31

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

Alternative

3. The administrator/operator
does not want to change the
camera settings

4. The system returns to the
camera managing use case

5.4 Storage viewing

5.4.1 View Events

Use Case View Events

Actors Administrator, operator

Purpose Observe what happens or what has happened

 Actor Action System Response

1. The operator/administrator
has indicated the need to view
an event

2. The system shows the
events interface

3. The operator/administrator
wants to view a (set of)
particular event(s)

4. The operator/administrator
selects a (set of) event(s)

5. The system shows the
particular events

Alternative

3. The administrator/operator
does not want to view the
events

4. The system returns to the
camera managing use case

 32

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

Figure 7: a full screen palm view

The different types of use cases that require a user interface have been
covered in this section. The next step is to transform these use cases into
real user interfaces. ConcurTaskTrees were used in the development and
the way that was done is covered in the next section.

5.5 Task analysis using ConcurTaskTrees

An important step in designing a user interface for embedded systems is
task analysis. These days most embedded systems are dedicated for
doing a particular task (like an ATM). By consequence it becomes
important to analyze this task. We use ConcurTaskTree to analyze the
tasks for this case study.

ConcurTaskTree is a notation designed by Fabio Paternò, offering
symbols to describe concurrent tasks. The hierarchical notation can be
unambiguously expressed in XML, which eventually can be mapped to the
XML used by the UIRenderer (see section 7.6) in a later stage. This
provides us with a context in which the user interface is working in,
enabling the UIRenderer component to make smarter decisions when
building a platform dependent presentation of the abstract interface. Also,
this notation could provide use with an idea of the possible sequences of
dialogs in a dialog-based user interface.

ConcurTaskTree provides us with the following properties:

◗ a graphical syntax : more intuitive to use

◗ concurrent notation : expressing temporal ordering

◗ focus on activities : focus on relevant aspects, which are not
system-related

◗ hierarchical modelling structure : allows clean problem
decomposition

 33

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

There are several possible tokens available in ConcurTaskTree. Here is a
short explanation for each of them:

T1 ||| T2 : task T1 and task T2 are interleaving (concurrent) tasks;

T1 [] T2 : one of the tasks T1 or T2 will be selected (“or"-ed) to be
executed;

T1 |=| T2 : the execution order of T1 and T2 is independent of T1 and T2;

T1 |[]| T2 : T1 and T2 are “synchronized"; this means there is information
exchange between the two tasks;

T1 [> T2 : T1 will be deactivated if T2 terminates;

T1 |> T2 : T1 will resume if T2 terminates

T1 >> T2 : T2 only starts if T1 is deactivated;

T1 []>> T2 : T2 only starts if T1 is deactivated and information is
exchanged;

T * : T is performed repeatedly, until it is deactivated by another task;

T(n) : T is performed n times;

[T] : T is an optional task;

Given these tokens, we can describe a wide range of tasks (there is no
need for explicit interaction; the task could very well happen without
human interaction). It gives us an overview on the temporal dependencies
and illustrates the context in which an individual task resides.

This section shows ConcurTaskTree diagrams to model the interaction
with the system when doing administrative tasks. The following tasks are
included:

◗ Adding a new user to the system: figure 8

◗ Changing the frame rate of the camera: figure 9

◗ Setting the hotspot: figure 10

◗ Setting the image compression: figure 11

◗ Viewing the events: figure 12

◗ Zooming: figure 13

◗ Store settings: figure 14

◗ Loading stored settings: figure 15

 34

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

With these ConcurTaskTrees some possibilities for real user interfaces
were created. Images of some of them can be found in the previous use
case section. The design of user interfaces cases for the camera
surveillance system case is explained further on.

 Figure 8: Adding a new user to the system

Figure 9: Change the frame rate

 35

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

 Figure 10: Set a hotspot

 Figure 11: Set the image compression

 Figure 12: View the events

 36

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

 Figure 13: Zooms in/out the system

 Figure 14: Store settings

 Figure 15: Load stored settings

 37

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

6. Architecture

This chapter gives a description of the architecture of the SCSS. The
architecture is described by means of blueprint and instance diagrams. A
detailed definition of these diagrams can be found in [14].

Blueprint and instance diagrams do not prescribe any particular physical
distribution of the components. Distributing these components is done at
system deployment time. The best way to deploy the components is of
course dependend on the particular (network) architecture of the site
where the SCSS has to be installed.

Reading this chapter is sufficient to understand the design and
architecture of the complete system. Chapter 7 will elaborate, in detail, on
the different parts of the SCSS, here we will only give a high-level
description.

6.1. Overview of the SCSS

Before discussing the architecture, some essential concepts are repeated
here:

A component instance is an autonomous piece of code that can
exchange messages via its ports instances. The behaviour of a
component instance is described in a component blueprint. The
specification of a port instance is described in its corresponding port
blueprint. The port blueprint describes the signatures of the incoming
and outgoing messages (syntactic interface), the semantics of these
messages and the parameters of these messages (semantic interface),
the sequential order in which the messages have to be sent
(synchronization interface) and eventual quality of service parameters
(qos interface).

Component instances can exchange messages with each other when
they are connected by means of ‘compatible’ port instances; this
connection is called a connector. Two port instances are said to be
‘compatible’ if their corresponding port blueprints are compatible. This
means that they have to understand the same messages, and they have
to adhere to the same synchronization protocol.

Note: it is also possible to connect more than 2 port instances with one
connector. However, we will not need this type of interconnection here.

Figure 16 shows a zoomed out view of the complete SCSS architecture.
It shows the core parts of the system. The diagram does not show the
components yet, these will be shown in subsequent (more detailed)
diagrams.

 38

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

As one can see, multiple cameras, storages, … can exist in the system.
The system can be accessed via a number of user interfaces. There is
only one controller in the entire system.

Figure 16: overview of the SCSS core components

The camera component represents a physical camera in the system. The
mosaic component multiplexes several video outputs from the camera
into one new video output. The zoom behaviour component contains
logic to control the zoom of one or more cameras. Next, the motion
detection component analyses the video streams of the cameras and
raises an alarm when it detects motion. The storage component is
responsible for the storage of events (eg. alarms) and video sequences.

The figure also shows a controller component. This component is
responsible for the bootup of the system and the management of the

User Interface

PDA
User Interface

PDA

Zoo
m

St
or

M
os

Mot
ion

Mosaic Zoom
behaviour

Motion
detection

Storage

Ca
m

Controller

Camera

UI Renderer PDA

Client

 39

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

SCSS components. It can also be used by SCSS components to be
notified of the activation or deactivation of other SCSS components. In
fact, it acts like a directory service.

Next, we have the user interface. The user interface is used to interact
with the SCSS from the outside world. There can be different types of
devices on which the user interface has to be shown, so there are different
types of UI Renderer components. An UI Renderer component is
responsible for the representation of interfaces on a particular device and
it is orchestrated by means of the client component.

A client component is independent10 of the particular type of user
interface and is used to implement the application logic. The application
logic decides how a user can interact with the system, and when particular
interfaces for devices or services must be shown to the user11. In fact,
one should see this client component as being the component that
implements the behaviour described in the use cases (chapter 5).

6.2. Description of the SCSS components

This section describes the core components of the system by means of
blueprint and instance diagrams. For a more elaborate specification of the
components we refer to the next chapter. This section can be read if you
are not interested in the detailed specification and design of every
component.

For each component, a blueprint model is shown that contains this
component and all other components that are related to it. Eventually, an
instance model will be used to illustrate how these components behave at
runtime.

10 It is likely that all user interfaces will make use of the same client component. The user interfaces can
reuse this component since it contains no device specific logic.
11 That is why we say that this component ‘orchestrates’ the interaction.

 40

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

6.2.1. Controller

Figure 17 represents the controller component blueprint.

Figure 17: the controller component blueprint

The controller has two ports that are used in relation to the component
system: the component and component system ports:

• Component port: is used by the component system for initializing
components. Every component has such a port.

• ComponentSystem port: can be used by the controller to be notified
of the presence or absence of other component systems.

A controller has also a port that is used in relation to other SCSS
components:

• Controller port: is used for SCSS management purposes (eg. it
checks if SCSS components are still alive). SCSS components can
also use this port to receive notifications of join or disjoin actions of
other SCSS components.

Important remarks:

Most SCSS components will have a controller port, therefore we will not
draw this port in subsequent diagrams.

Every SCSS component also has a component port and eventually a
component system port. We will not draw the component port in
subsequent diagrams. If a SCSS component makes use of a component
system port then this will be indicated.

6.2.2. Camera

Figure 18 represents the camera component blueprint and four additional
component blueprints that are related to it.

 41

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

The camera component represents the physical camera and has
following ports:

� UIRenderer port: this port is used by the user interface to retrieve
the user interface description for this camera.

� ZoomRequest port: this port is used by the camera to interact with
the zoom controller (= zoom behaviour component). It notifies the
zoom controller of zoom requests. The zoom controller can then
decide to allow this zoom request or to change this zoom request
into a new zoom action (see also 6.2.3.). If no zoom controller is
present, then all zoom actions are allowed.

� Settings port: this port can be used by an unlimited number of
other components for sending zoom, balance, … requests to the
camera. It can also be used to retrieve these settings. The
settings port will also notify subscribed components of changes in
the camera settings.

� VideostreamDecoderFactory port: this port is used by other
components to obtain a videostream decoder component. A
video stream decoder component is able to decompress (or
decode) the video stream of the camera. It can also be used to
change the camera settings or to receive notification of changes.

� VideostreamUpdate port: this last port is attached to the
videostream decoders. It is used to send out encoded image
updates. The port has an unlimited multiplicity since there may be
several components (and associated decoders) interested in the
video stream of this component.

The videostream decoder component is used by any component that is
interested in the video output of a particular camera. It transforms a
compressed format in a standard RGBa format. The decoder can also be
used to send zoom, focus, … requests to the camera. For each
component that is interested in this camera, a videostream decoder is
instantiated. To instantiate a videostream decoder for a particular camera,
the videostream decoder factory port has to be used. The ports of a
videostream decoder are:

� VideostreamUpdate port: via this port, the decoder receives
updates from the camera. These updates are encoded.

� Settings_out port: this port is used by the videostream decoder to
set the properties of the camera (zoom, balance, focus,…). It
forwards requests that arrive at the settings in port if it can not
handle these requests itself.

� Settings_in port: the component that makes use of the decoder
component, can also make use of this decoder to set the

 42

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

properties of the camera or to receive notifications of changes in
the settings of the camera. As such, a component will never set
the properties of a camera directly; it will always use a decoder
component instead. The decoder will apply the setting locally if
possible. In other cases, the request will be forwarded to the
camera.

� OutputStream: this port is used to retrieve the RGBa images from
the decoder. These RGBa images are generated from the stream
of image updates received at the videostream updates port.

The delay component can be used to add a delay in a particular stream.
This component has two stream ports: one port where the decoded
videostream enters (in RGBa format) and one port where the videostream
leaves the component after having experienced a particular delay. The
delay can be set via the delay settings port.

The switch component can be used to switch on or off a particular
videostream. The component has a port where the videostream enters,
and a port where the videostream leaves the component if the switch is in
the on state. If the switch is in the off state, nothing happens: there is no
output stream. The switch component has also a port to control the switch
state.

 Figure 18: camera and related components

 43

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

Finally, there is the prioritizer component. This component is put
between the camera and all decoders for that camera. Sometimes,
decoders will send conflicting setting requests to the camera (eg. one
decoder wants to zoom out while the other wants to zoom in). The
prioritizer takes care of these conflicting requests.

The switch and delay components are ‘utility’ components: their use is
optional. We will show an example of their usage in section 6.2.6.

Figure 19 shows an instance model containing a camera instance that is
connected to a video decoder instance. The output of the video decoder
is connected to a switch. The switch operator component controls the
switch and can thus enable or disable the flow of images to the stream
consumer component. The switch operator and stream consumer
components are undefined at the moment. The prioritizer component is
also shown in the figure, but it has no important meaning in this situation
since there is only one videostream decoder. We will leave the prioritizer
component out in the remainder of the document.

Figure 19: switch operator controls the stream directed to a stream consumer.

 44

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

6.2.3. Zoom Behaviour

This component is also named the zoom controller component. It controls
the zoom behaviour of a set of cameras based on a configurable zoom
behaviour formula. A possible situation where this component can be
used is to control the zoom activity of two camera’s that are located in the
same room: when the first camera zooms in, then the zoom controller will
zoom out on the second camera. This can for instance be used to
maintain complete coverage of a particular area in the presence of zoom
activity.

Figure 20 shows the zoom behaviour component blueprint.

 Figure 20: zoom behaviour component

The important12 ports of the zoom behaviour component are:

� ZoomRequest port: this port will be attached to the zoom request
port of the camera component. The camera can report zoom
requests via this port. The controller can use the port to send
zoom actions to the camera.

� Behaviour port: this port is used by any component that wants to
set a particular behaviour formula for the component. The formula
is based on a lineair equation. It indicates how the zoom controller
should behave in the event of zoom changes on one or more
cameras.

12 Not all ports are shown here: the zoom behaviour component has also a component port like all other
components.

 45

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

� ZoomEvent port: this port is used to receive notifications of zoom
changes on other cameras. Based on these notifications the zoom
controller will decide to take action or not.

� ZoomChange port: this port is used to send out camera zoom
change notifications to other components (eg. the port can be
connected to the zoom event port of another zoom controller).

� UIDescription port: this port is used to output the user interface
description of the zoom controller.

� Camera port: this port is used to obtain the minimum and
maximum zoom parameters of the camera.

6.2.4. Mosaic

The mosaic component combines several video input streams into one
new video output stream; all inputs are multiplexed13 on the output stream.

The mosaic component has two ports:

� InputStream port: this port can be attached to every component
that generates an RGBa image stream.

� OutputStream port: the mosaic component multiplexes all input
streams onto a new output stream. This port can be used to read
out this stream.

A visual representation of this component is not given here. More
information can be found in 7.3.7.

6.2.5. Storage

The storage is also an important part of the SCSS. The storage can be
used to store image sequences (video) or events (eg. alarms). The
storage can also be used to retrieve image sequences and events.

The storage part of the SCSS consists of two components: the storage
controller and storage components. The storage controller is connected
to other components in the system and contains the storage logic, while
the storage component is responsible for the storage and retrieval of
events and images in a database. The storage component is not
connected to other components in the system, and has no logic
associated with it. In fact, it can be seen as an adapter to a database
system.

The important ports of the storage controller are as follows:

13 This multiplexing can be done by splitting the available resolution in blocks. An input stream is then
downsized to fit in one of these blocks.

 46

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

� UI Description port: this port is used to retrieve the user interface
description of the storage subsystem.

� Video Out port: this port is connected to a UI renderer component
for visualisation of recorded image streams.

� Data Out port: this port is connected to a UI renderer component
for visualisation of recorded events.

� Query In port: the client (see 6.1.8.) component is connected to
this port to send queries about events or recorded image
sequences to the storage controller. Based on the query, the
storage will search the corresponding image sequence or event
and output it via its video out and/or data out ports.

� Event Log In port: an unlimited number of components can make
use of this port if they want to store events on the storage.

� Video Record In port: components that generate image streams
can be connected to this port if they want to store the images.

� DB Out port: this port is used to connect to the storage
component. It is used as the main link between the storage
controller and the storage.

The one and only port of the storage component is the InOut port. This
port is connected to the DB out port of the storage controller. It is used to
exchange image sequences and events between both components.

Figure 21 shows the storage controller and storage component blueprints.

 Figure 21: storage controller and storage component blueprints.

 47

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

Let’s illustrate the use of these components by means of an instance
diagram: suppose one wants to record two video streams, each one
coming from a switch component. There is also another component that
generates events that have to be stored on the storage. Figure 22 shows
how this can be done.

Figure 22: instance model of storage.

The output stream ports of both switches are connected to video record in
ports of the storage controller. The event port of the event generator is
connected to the event log in port of the storage controller. The DB out
and InOut ports are also connected; this internal connector is used by the
storage controller to store the images from the switches and events from
the generator, into the storage database.

6.2.6. Motion Detection

The main task of the motion detection subsystem is to control the image
output for a set of cameras and to analyse the image stream for eventual
motion. Once motion is detected, this motion event (or motion alarm)

 48

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

must be stored on the storage. The motion detection subsystem can also
decide to start the recording of the involved camera where motion was
detected.

The motion detection subsystem consists of a set of camera motion
detection components: for each camera there will be one such
component. The camera motion detection component continuously
applies a motion detection algorithm on the image stream coming from the
camera.

When the component detects motion, it will store a motion event on the
storage and it will eventually start the recording of the video stream
coming from this camera.

The ports of the camera motion detection component are:

� Stream Input port: via this port it receives the RGBa image stream
from a camera (decoder). This stream will be analysed for motion.

� Camera Settings port: this port is connected to the settings port14
of the camera. If the zoom status of the camera changes, then the
camera will notify15 the camera motion detection component of this
event.

� MD Settings port: this port can be used to set or get properties of
the camera motion detection component. Possible properties are:
enable/disable motion detection, set hotspot, …

� UI Description port: the motion detection component can send a
user interface description of itself to interested parties for
visuatization.

� Motion Event port: this port can be connected to the storage.
Every time that motion is detected, a motion detected event will be
sent through this port.

� Switch Trigger port: this port can be attached to one or more
switches for starting or stopping a video stream.

Figure 24 shows the camera motion detection component blueprint.

14 It is also possible to define a port that only listens to zoom events from a zoom behaviour component
(see 7.2.). But this would imply that every camera needs a zoom behaviour (which is not the case).
15 The motion detection process will stop during the zooming period. This is important, since zooming will
result in a huge amount of motion alarms.

 49

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

 Figure 24: the camera motion detection component.

How will this component be used? A possible usage pattern for this
component is to let it record a particular video stream when motion is
detected.

A (wrong) solution is the folowing: Use a switch component to enable or
disable a particular stream. The stream output of the switch is connected
to the storage video record in port. When motion is detected, the motion
detection component can trigger the switch to the on state. At that
moment, the stream flows to the storage.

There is a problem with this approach: the motion detection component
needs some time to process images and detect motion. If motion is
detected, the switch will be triggered, but then it will be too late: the
images containing the motion are already gone. Therefore, a delay
component is put between the camera and the storage. This delay
component buffers the stream for some time. The delay duration must of
course be longer than the time it takes to perform the motion detection
process16. Using a delay component ensures that the images containing
the important information are stored on the storage.

Figure 25 shows an instance diagram with a camera component that is
capturing images and sending these images to two videostream decoder
components. The first videostream decoder is connected to the camera
motion detection component. The stream coming from this decoder is
thus the one that is being analyzed. The second videostream decoder is
connected to a delay component. The delay value of this component is
chosen larger than the processing time needed by the motion detection
component. The delay component is connected to a switch that is

16 This situation could be represented by means of a timing contract. It can however not be represented
with a basic timing contract (for more information about timing contracts, see [14]).

 50

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

operated by the camera motion detection component. Finally, the stream
output of the switch is connected to the storage controller for recording the
images.

Figure 25: a camera motion detection component that controls a switch

Notice that the camera motion detection component is also attached to the
camera component. When the camera is zooming, the camera motion
detection will stop processing the images until the zooming has ended.

To summarize … The resulting behaviour, of the example given above,
will be the following:

� When there is motion, then the videostream will be recorded
(including the images containing the motion).

 51

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

� When no motion is detected, then no videostream is recorded.

The main advantage of this approach is the fact that images are only
recorded when there is motion. This reduces the amount of needed
storage space.

6.2.7. Client

It is not a good idea to put the application logic in the user interface.
Therefore, we make use of a client component. This client component
contains the application logic for the SCSS and is not bound to any
particular type of device. As was discussed earlier (in section 6.1.), this
client component orchestrates the interaction between a user and the
system.

The client component is connected to all SCSS components that have a
port that can provide a user interface description. It is also connected to
the storage controller by means of a query port. This is done to let the
user perform queries on the storage via the client. At last, the client is also
connected to the UI Renderer component. Via this binding, the client tells
the UI Renderer component what to show and the UI Renderer informs
the client from user interface events.

The client has following ports:

� UIDescription port: this port can be connected to all SCSS
components that have to visualize their user interface.

� QueryStorage port: via this port, the client sends queries to the
storage controller. These queries are initiated by the user.

� UIOut port: this port is connected to the UI Renderer component.
It is used to send user interface descriptions for visualization.

� EventIn port: via this port, the client receives user interaction
events that occur in the interface (eg. clicking on a button).

To summarize: the UI Renderer visualises the interface and the client tells
the UI Renderer when to visualize something (based on client actions).

Figure 26 shows the client component blueprint.

 52

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

 Figure 26: the client component

6.2.8. User Interface

The user interface is an important part of the SCSS. Depending on the
type of device and device output capabilities, the user interface will be
represented in different ways. As such, there will exists several user
interface renderers. But all user interfaces will make use of the same
application logic (the client component).

The UI Renderer component is responsible for rendering the user
interface descriptions of SCSS components on the screen. As input it
takes an XML description and renders it in a way that is dependent on the
device output capabilties. This rendering constrains itself to UI widgets
(buttons, lists, …). The UI Renderer can also be connected to data ports
for extra visualisation possibilities that go beyond widget visualisation17.

The UI Renderer has following ports:

� UIDescription Requires port: this port is connected to
components that can export user interface descriptions (eg. the
client component). These components can send XML descriptions
that the renderer must visualise.

� DataIn Provides port: this port can be connected to all
components that have some data to visualize. For instance, the
storage can send event data to the renderer, like video streams.

17 This can for instance be used to show streaming video on the screen.

 53

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

� EventOut Provides port: this port will be connected to the event in
port of the client component. It is used to report user interaction
events (eg. a button that has been clicked) to this client.

� UIStateDescription Provides port: see 7.6.2.2.

� PutUITree Provides port: see 7.6.2.2.

� PutUITree Requires port: see 7.6.2.2.

The last three ports will not be used in the examples here, so we refer to
section 7.6.2.2. for more information about them. Figure 26 represents
the ui renderer component.

 Figure 26: UI renderer component blueprint

Figure 27 illustrates the use of a ui renderer, client and storage controller
component. The client is connected to SCSS components that can export
a user interface (component 1, component 2 and the storage controller),
via their ui description ports. It is also connected to the storage controller
via a query storage port. The ui renderer component is connected to the
ui out and event in ports of the client. It is also connected to the storage
video out and data out ports.

The client component tells the ui renderer component what to show. This
is done via the ui out port. The ui renderer reports user interface events to
the client component (via the event in port), who can then decide to render
another interface or to perform any other action (eg. changing a camera

 54

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

setting). If the user wants to query some images or events from the
storage, then the client will issue these requests via the query storage
port. It is clear that the client plays a central role.

Figure 27: interconnection of client, ui renderer and storage controller.

6.3. Example

The previous section discussed the different types of components that can
be used to make up the entire system. Every component was described
on its own, sometimes its use was illustrated by means of an instance
diagram.

 55

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

This section will show some instance diagrams for a particular SCSS
configuration (without deployment information). Some details will not be
shown if they do not add any information18.

6.3.1. Cameras

First of all, the example SCSS consists of two cameras. Both cameras
have each a zoom behaviour component that is controlling their zoom
behaviour. Both zoom behaviour components are connected to each
other:

The behaviour of both zoom behaviour components is as follows: “When a
camera zooms out for x % then the other camera has to zoom in for x %
and vice versa”. As such, each zoom behaviour component listens to
zoom events coming from the other zoom behaviour component. That is
why both components are connected to each other. Figure 28 shows the
situation.

Figure 28: the SCSS consists of 2 camera and 2 zoom behaviour components

18 All SCSS components have a controller port that is attached to the controller component and a
component port that is attached to the component system component. We do not draw these components
and ports in order to not overwhelm the diagrams with information.

 56

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

Every zoom behaviour component receives zoom requests from its
associated camera on its zoom request port. It can then decide if the
request should be granted or not. If the request is granted, the camera is
informed of this and can start zooming. The zoom behaviour component
that granted the zoom request will send a zoom event to the other zoom
behaviour component. This last component will then send an opposite
zoom action to its camera.

The zoom behaviour components are also connected to their camera via
the camera settings port. This is necessary since the zoom behaviour
components need to know the minimal and maximal zoom values of the
camera.

6.3.2. Storage

The example SCSS has a storage controller component (and associated
storage component, but we will not show it here). The storage controller
component is connected to video stream decoders for the cameras
through delays and switches. Decoder 1 is a VideoStreamDecoder for
camera 1 and decoder 2 is a VideoStreamDecoder for camera 2. The
switch components enable the control of the video streams coming from
the decoders. These will be connected to the camera motion detection
components (section 6.3.3.). The delay components slow down the video
streams coming from their inputstream ports. The reason why we have
put delay components in this diagram was already explained earlier
(section 6.2.6.)

Figure 29 shows the storage controller component and all the switches
and delays between the decoders and the storage controller.

 57

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

 Figure 29: the video output from both cameras is routed to the storage.

6.3.3. Motion Detection

The SCSS consists of two camera motion detection components. Each
camera motion detection component analyses the output of one camera.
To do this, they also use a VideoStreamDecoder component.

If motion is detected, then this is reported to the storage by sending a
motion detected event. The camera motion detection components also
control the switches shown in figure 29: if motion is detected, then these
switches are opened. If no motion is detected, then the switches are
closed.

Figure 30 shows the situation for one camera motion detection component
(namely for camera 1). As one can see, the camera motion detection
component is connected to the storage controller via its motion event port.
If motion is detected, then the camera motion detection component will

 58

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

send a motion event to the storage. The camera motion detection
component is also connected to the control port of the switch, via its switch
trigger port. This enables the motion detection component to open or
close the switch in order to start or stop the recording of the images.

Figure 30: motion detection for camera 1

The switch 1 and storage controller controller are the same components
as in figure 29. Recall that it is possible to reuse component instances in
different models. Connectors from figure 29 are visible if the components
to which they are attached are also visible (this is the case with the stream
1 connector).

6.3.4. Mosaic

Another important component is the mosaic component. This component
combines the stream outputs of both cameras into one new video stream
Figure 31 is an illustration of this mosaic component.

 59

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

Figure 31: the mosaic component combines the streams of both cameras.

6.3.5. Client and UI Renderer component

Recall that the client component is responsible for the user interaction
orchestration and that the ui renderer component is responsible for the
rendering of user interfaces (on a screen for instance).

The client sends user interface descriptions to the ui renderer (via the ui
out port) and is connected to all SCSS components that can export a user
interface (via the ui description port). In the example, several components
have a user interface: camera 1, camera 2, camera md 1, camera md 2,
storage controller, zoom behaviour 1 and zoom behaviour 2. We will only
connect the client to the cameras and the storage controller; this enables
us to visualize the user interface of the cameras and the storage. Other
user interfaces will not be visualized in the example19.

The client is connected to the storage controller via its storage query port.
This means that a user is able to perform queries on the storage.

The ui renderer is connected to the video out port of the storage. This
enables the ui renderer to show stored images. Finally, the renderer is

19 In real situations this will not be the case: everything that should be visualized must be connected to the
client.

 60

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

connected to the data out port of the storage, to render events stored in
the storage (like motion alarms). Figure 32 illustrates this.

Figure 32: client orchestrates the user interactions.

The configuration shown above allows one to:

� Visualize the user interface of the cameras.

� Visualize the user interface of the storage.

� Visualize recorded video and events.

� Submit queries to the storage.

It is clear that this is only basic functionality. We also need to add a
possiblity to show live video streams from the cameras, mosaic output,
visualize the motion detection component, and so on.

 61

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

7. Component Specification

In chapter 6 the core components of the SCSS were introduced and a
short description of their behaviour was given. In this chapter, the core
components are specified in more detail: context information is given, the
interfaces are described formally and use cases are included to give
information about their use.

The chapter is subdivided as follows:

Section 7.1: the controller component.

Section 7.2: the zoom behaviour component.

Section 7.3: the image generating components.

Section 7.4 the storage and storage controller components.

Section 7.5: the camera motion detection component.

Section 7.6: the UI renderer component (also see [15]).

Section 7.7: the client component.

The Component Composer Tool deliverable ([14]) handles about an XML
format that can be used to specify the components. The XML format is
not applied to the remainder of this chapter; a more informal descriptive
language is used instead. XML specifications would make the
specifications difficult to read20.

20 For a human.

 62

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

7.1. Controller Component

This section describes the design of the Controller component. This
component takes care of setting up interconnections between
components.

7.1.1. Description

The controller his functionalities are described as follows:

◗ If new components connect or reconnect, all interested
components will be notified.

◗ If components die or disconnect, the interested components will be
notified.

◗ The controller takes care of distribution errors.

◗ The controller takes care of booting the system.

◗ When new component systems connect to the component
infrastructure, the controller will upload the necesarry components
to the target.

The controller is not responsible for the following:

◗ The controller does not handle runtime events and does not
synchronise between components, nor does it contain any
application logics.

◗ The controller is not responsible for security, account
management, nor choosing between different events.

The controller in the second period of this project (year 2 to 4) can be
extended to

◗ Offer component migration

◗ Remote update of components

7.1.2. Use Cases

7.1.2.1. Boot up

The boot up of the camera system contains two phases. The first phase
covers the startup of the master-server, which also boots the controller. In
the second phase, all cameras are looked up and new component
systems can connect.

 63

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

Phase 1: Master Component System Boot up

◗ [MCS]starts up with on the command line as only argument the
controller component

◗ [MCS]loads the controller component

◗ [C]reads the initialisation file which contains a list of components to
load

◗ [C]sends a create message to the MCS for all listed components

◗ [MCS]loads all components and initialises them. Normally, these
component will not make connections with other components.

◗ [C]reads from the initialisation phase which components should
connect to whom.

◗ [C]sends 'faked' Connect messages to all those components.

Phase 2: Client boot up

◗ [CCS]starts up with only the IP-address of the Master Component
System on the command line.

◗ [CCS]connects to the MCS on the given address. Also connects to
the Master Component System component.

◗ [MCS]accepts the connection, sends out a connect message to all
interested parties (In this case, the controller)

◗ [C]looks up which components should exists at the given address.

◗ [C]sends out creation messages to the CCS for theses
components

◗ [CCS]creates the components (loads the classes from the server)

◗ [C]after creation of the new components, the controller will send
the correct 'faked' connect messages.

7.1.2.2. Component Join & Disjoin

Components can subscribe themselves to retrieve notification of certain
new components within the system. For example, a user interface
component would like to subscribe to new cameras. The user interface
component will receive from the controller a connect message when a
new camera joins (or is created).

Disconnecting component can be initiated from anywhere. Every delete
command must be send to the controller, which will ask all components to

 64

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

disconnect themselves. If they don't the controller will take action. We will
now illustrate connecting and disconnecting

Connecting

◗ [UI]is loaded and requests the controller a join for 'cameras'

◗ [CC]The camera component is loaded (by the controller)

◗ [C]Sends a HasJoined message to the UI

◗ [UI]Sends a connect message to the camera

◗ Disconnecting

◗ [UI]wants to disjoin, sends a message to the controller

◗ [C]sends a disconnect to the UI

◗ [UI]disconnects all its ports

7.1.2.3. Unwanted Component Disconnection & Component System
Disconnection

At the moment a component disconnects because there was an error
(crash in the component) or a network failure, all dependent components
will be notified with a HasDisjoined message. The messages which trigger
such an action are

◗ ComponentSystemDisconnect

◗ ComponentSystemFailed

◗ ComponentFail

◗ ComponentDisconnected

7.1.3. Interfaces

7.1.3.1. port Component (noi=1)

◗ [in Init()] is send by the component system. This is guaranteed the
first message a component will receive

◗ [in Connect(Port:<String>, With:<String>)] connects the sender
his port With with the port Port of the receiver.

◗ [in Disconnect(Who:<String>, From:<String>)] disconnects
Who from port From at receiver side

 65

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

7.1.3.2. port ComponentSystem (noi=1)

◗ [in ComponentSystemDisconnect(ComponentSystem)] see
description of the ComponentSystem component21

◗ [in ComponentSystemFailed(ComponentSystem)] see
description of the ComponentSystem component

◗ [in ComponentSystemConnect(ComponentSystem)] see
description of the ComponentSystem component

◗ [in ComponentSystemQueueOverflow(ComponentSystem,
Reason)] see description of the ComponentSystem component

◗ [in ComponentDisconnect(Component)] see description of the
ComponentSystem component

◗ [in ComponentConnect(Component)] see description of the
ComponentSystem component

◗ [in ComponentFailed(Component)] see description of the
ComponentSystem component

◗ [out CreateComponent(BluePrint,Name)] is used to create all
the necesarry components

7.1.3.3. multiport Controller (noi=1)

◗ [in LookingFor(NameSubstring)] Requests the controller to look
for components with a name which contains the substring Name. In
response to this message, the controller will send back all existing
components and will from then on notify the requester of new
components mathcing the given name.

◗ [out HasJoined(Who)] is send to notify everybody that Who has
joined. This message is only send to all people subscribed to the
given NameSubstring.

◗ [out HasDisjoined(Who)] is send as a notification of a disjoin. Is
send only to subscribed components.

◗ [out Alife(Who)] is send out to check whether other component
systems are still alive.

◗ [in AreYouAlife()] response of previous message

21 In deliverable xyz

 66

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

7.1.4. Message Traces

7.1.4.1. Master Component System Boot Up

Figure 33: master component system boot up

 67

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

7.1.4.2. Camera Component System Boot Up

Figure 34: camera component system boot up

 68

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

7.2. Zoom Behaviour Component

This section describes the design of the CameraZoomBehaviour
component. This component takes care of zooming cameras and coupling
the zoom behaviour of a number of cameras.

7.2.1. Description

This is one of the plug in components, which is added to the system to
show its flexibility.

◗ The zoom behaviour component is able to notify all subscribed
components of a zoom changed notification.

◗ Zoom behaviour components can be coupled such that one
camera zooms in while another zooms out and vice versa.

7.2.2. Use Cases

7.2.2.1. Logging of zoom-events

It is possible to log zoom events. If we want this we should connect to the
zoom behaviour zoom changed port.

7.2.2.2. Selection of zoom events

It should be possible to select (prioritise) between a number of camera
zoom events. If for example, 2 users are zooming in at the same time,
together with an operator on the camera, the zoom behaviour controller
should select one suer and stick to him during a certain period of activity.

7.2.2.3. Coupling of Zoom Behaviours

It should be possible to couple two (or more) cameras, such that the first
camera zooms in while the second one zooms out. The constraints placed
upon the zoom will be simple linear equations.

7.2.3. Interfaces

7.2.3.1. port Component (noi=1)

◗ [in Init()] is send by the component system. This is guaranteed the
first message a component will receive

◗ [in Connect(Port:<String>, With:<String>)] see
ComponentSystem component

◗ [in Disconnect(Who:<String>, From:<String>)] see
ComponentSystem component

 69

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

7.2.3.2. port Camera (noi<=1)

We will use a port to the camera status to obtain information about the
maximum zooming parameters. This port is temporary. After obtaining the
values this port is not used anymore.

◗ [out GetMax(Type:<String>)] requests the maximum zoom

◗ [out GetMin(Type:<String>)] requests the minimum zoom

◗ [in Value(Type:<String>, Value:<Integer>)] answers to both
questions above

7.2.3.3. port ZoomRequest (noi=1)

This is the port offered by all cameras, which we have to implement in
order to intercept certain zoom events.

◗ [in ZoomChangeRequest(From:<String>, Value:<Integer>)]
incoming message from the camera, to ask whether the zoom can
be changed to the given value. If this is allowed this component will
send back a ZoomChangeAction.

◗ [out ZoomChangeAction(NewValue:<Integer>)] this message is
send back to the camera when the zoom should actually change.

7.2.3.4. multiport ZoomChange (noi=1)

This port is necessary for anybody interested in zoom-change events.
This is a stripped down interface of the camera-settings port and will be
used by other ZoomBehaviour components.

◗ [out ZoomChanged(Camera:<String>, Value:<Integer> ,>Initiat
edFrom<:[])] send out whenever the camera reports a change of
value of the zoom. Camera is the name of the controlling camera.
InitiatedFrom is an array with cameras, which has already send out
a ZoomChanged.

7.2.3.5. port ZoomEvent (noi>=0)

This port is necessary for anybody who wants to report a ZoomChanged
event at this controller.

◗ [in ZoomChanged(Camera:<String>, Value:<Integer>,
>InitiatedFrom<:[])] Camera is the name of the camera for which
the zoom has changed to value Value. In response to this
message, this camera can change its own zoom factor.
InitiatedFrom is an array of names which already sent a
ZoomChanged.

 70

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

7.2.3.6. port Behaviour (0<=noi<=1)

This port is used to change the formule used in each controller to react to
ZoomChanged events.

◗ [in SetFormule(A:<Integer>[], B:<Integer>)] The formule is a
linear equation. The integer array contains the coefficients. The
integer B contains the extra value added to all this.

7.2.3.7. port UiDescription (0<=noi<=1)

This port can be used by anybody to receive an XML description of the
behaviour port.

◗ [in GetUiDescription()] received from somewhere. In response we
have to send back an XML tree which contains the possible
behaviour of this component.

◗ [out PutUiDescription(Xml:<String>)] send out. Will probably
contain the parameters of the linear equation.

7.2.4. Example Message Sequences

7.2.4.1. Logging of Zoom events

Figure 35: logging of zooming events

 71

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

7.2.4.2. Coupling of 2 cameras

 Figure 36: coupling of 2 cameras

7.2.4.3. Coupling of 3 cameras, A with B, B with C

 Figure 37: coupling of 3 cameras

 72

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

7.3. Image Generating Components

This section describes the components that can generate video images:
the Camera, VideoStreamDecoder, Delay, Switch and Mosaic
component. An additional component (the Prioritizer) is introduced for
handling conflicting user requests.

7.3.1. Introduction

The Camera and the VideoStreamDecoder play an important role in the
test case as they are responsible for capturing video images and
delivering them to the other components. The camera component
captures the actual images. However, this component is not intended to
deliver the actual images to an application component, instead a
VideoStreamDecoder component is needed for this. The Camera
generates image information that can be used by one or more
VideoStreamDecoder components. Such a VideoStreamDecoder is a
component that is provided by the camera itself. As such, a
VideoStreamDecoder provided by a Camera can only be used to decode
information delivered by this Camera; for decoding video information
delivered by another type of camera, another VideoStreamDecoder is
necessary. The format used for transmitting information between a
Camera and an associated VideoStreamDecoder is only known by these
two components.

A Camera should be able to provide two VideoStreamDecoders: one for
producing an RGBA (RGBA is the natural choice as it is the native image
format used by Java) and one for producing a B/W image.

The format in which data is transmitted from a Camera to a
VideoStreamDecoder can change over time, e.g. a Camera can decide to
switch from color to B/W images or use some kind of compression if the
network load becomes too high.

The reason we have chosen a Camera/VideoStreamDecoder combination
is fourfold:

◗ A new hardware camera using a new video format can be added
very easily; it suffices to write an appropriate VideoStreamDecoder.

◗ If, for whatever reason, we would decide that the application needs
another image type (e.g. YUV), it suffices to add
VideoStreamDecoder components to the different Camera types.

◗ The VideoStreamDecoder is intended to run on the (embedded)
system where the images it generates are consumed.22 This
allows us to limit the high bandwidth between the

22 This is not forced by the system.

 73

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

VideoStreamDecoder and its consumer to this system only, without
using valuable network bandwidth. Using some kind of
compression, we should be able to limit the bandwidth needed for
the communication between the actual Camera and the
VideoStreamDecoder.

◗ A VideoStreamDecoder is able to alter the image in a limited way
(see later). This becomes handy when two or more components
request images from the same Camera, but with different settings
(e.g. another brightness). As a VideoStreamDecoder component
can change the brightness of an image, this relieves the Camera of
generating two different images. As such, VideoStreamDecoders
allow us to distribute the computational load over the entire system
while limiting the network bandwidth at the same time.

7.3.2. The Camera Component

7.3.2.1. Description

The Camera is the only component that actually communicates with the
hardware camera. Its main purpose is to grab images from the camera
and broadcast them to other components.

7.3.2.2 Interfaces

◗ port Component(noi=1)

Port required by the component system.

in Init()

in Connect(Port:<String>, With:<String>)

in Disconnect(Who:<String>, From:<String>)

◗ port VideoStreamDecoderFactory (noi>=0)

Using this port, a VideoStreamDecoder component can be requested by
an application.

in GetFormats()

A request for a list of video formats (resolution and color depth) supported
by the VideoStreamDecoder that can be provided by the camera. The
answer is sent back using FormatList().

out FormatList(videostreamformat: <String>[])

The answer to a GetFormats request.

 74

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

in GetDecoder(VideoFormat:<String>)

A request for a VideoStreamDecoder that is able to deliver video images
in the format as described by VideoFormat. The camera reacts to this
message by sending a Decoder(), a FormatNotSupported() or a
ResourceViolation() message.

out Decoder(VideoStreamDecoder:<Component>)

The VideoStreamDecodercomponent sent as a response to a
GetDecoder() query. As soon as a component receives the decoder, this
connection with the VideoStreamDecoderFactory port can be closed as
the VideoStreamDecoder will handle all future communication with the
Camera.

out FormatNotSupported()

Answer to a GetDecoder() message requesting a decoder for an
unsupported VideoFormat.

out ResourceViolation()

Answer to a GetDecoder() message requesting a decoder that is not
supported at this moment, e.g. because the requested VideoFormat is not
compatible with formats requested by other components.

◗ multiport VideoStreamUpdate (noi=1)

This port is used for sending image information to one or more
VideoStreamDecoder components. This port can be a multiport or multiple
single ports. In the latter case the camera can send different images to the
different VideoStreamDecoder components, probably resulting in a higher
processor load for the system running the Camera component.

out VideoStreamUpdate(VideoStreamUpdate:<java.lang.Object>)

Image information sent to a VideoStreamDecoder. As only a
VideoStreamDecoder provided by this Camera is able to use the
information in a useful way, it makes no sense to send this message to
another component.

out Stalled()

Message sent by the camera if it is unable to generate new images for
whatever reason. Is equivalent with SettingsChanged(FRAMERATE, 0)
(see later).

◗ port Settings (noi>=0)

This port is used for getting/setting certain properties of the image
requested. These settings can be the zoom factor, the brightness, the

 75

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

sharpness, etc. The only setting that cannot be changed using the port is
the resolution of the requested video images. Changing the resolution can
only be done by requesting an appropriate VideoStreamDecoder.

This port connects (normally) only with a VideoStreamDecoder provided
by the same camera. However, one can imagine components that would
connect to this port without using a VideoStreamDecoder component. An
example could be a component that checks the processor load and
decides to lower the framerate of the images generated.

The only reason why a message reaches the Settings port of the Camera
is that a VideoStreamDecoder forwarded the request because it is unable
to fulfil the request itself. This happens in three cases:

◗ the request can never be fulfilled by a VideoStreamDecoder;
e.g. a zoom out request.

◗ the request can not be fulfilled by a particular
VideoStreamDecoder because the decoder is too dumb.

◗ the VideoStreamDecoder has the required functionality but it
refused to use it because it would damage itself; e.g. because it
would require too much processor cycles.

In all these cases, the Camera must fulfil the request, unless it is an
impossible request, e.g. asking for a negative zoom.

In all following messages ‘Type’ represents a particular setting, e.g.
brightness, zoom, …

in Supports(Type: <String>)

Request whether the camera supports a certain setting. The answer (yes
or no) is returned using Value().

in GetMax(Type: <String>)

Request for the maximum value of Type. The result is sent back using
Value().

in GetMin(Type: <String>)

Request for the minimum value of Type. The result is sent back using
Value().

in GetCurrent(Type: <String>)

Request for the current value of Type. The result is sent back using
Value().

 76

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

in Set(Type: <String>, Value: <Integer>)

Change Type to Value. As a result, we send Value() back to the requester
and SettingsChanged() to all other VideoStreamDecoders that receive our
images. The latter is not necessary if VideoStreamUpdate is not a
multiport, but multiple single ports. Note that the Camera can decide at its
own discretion to change a certain setting, as long as it informs all
VideoStreamDecoders using SettingsChanged().

The zoom setting is handled in a special way (see later).

If we receive multiple conflicting requests (e.g. ComponentA requests 15
frames per second while ComponentB needs 30 frames per second) the
last requested value is chosen. Using Value(), the chosen value is sent
back. If the setting is changed at a later time, this is sent back using
SettingsChanged, e.g. SettingsChanged(Type=FRAMERATE,
NewValue=60).

The idea is that components that don’t get the requested value, deal with it
themselves (e.g. dropping half of the frames they receive) or notify the
application component using a SettingsChanged (this can be regarded as
a Java exception thrown form the bottom and forwarded until a
component deals with it. In the worst case, the exception reaches the user
application). Example:

◗ ComponentA and ComponentB receive images from the same
CameraAB using VideoStreamDecoderA and
VideoStreamDecoderB.

◗ ComponentA requests a brighter image, so it send Set(GAIN,
10) to VideoStreamDecoderA. There are now two possibilities:

◗ VideoStreamDecoderA is intelligent enough to do this itself
(multiplying each pixel value with a constant)

◗ VideoStreamDecoderA is unable to do it himself. The decoder
then forwards the request to the camera. CameraAB reacts
by changing the gain of the camera images (either in hard- or
software). As this also changes the image generated for
VideoStreamDecoderB (if VideoStreamUpdate is a multiport)
this decoder is notified using SettingsChanged(GAIN, 10).
VideoStreamDecoderB can react to this in two ways:

◗ It can take countermeasures (e.g. by changing the pixel
values again). In this case ComponentB will still receive
images with the original gain settings.

◗ It does not take countermeasures. In this case,
ComponentB is notified of the fact that the images are

 77

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

taken with a changed gain setting by sending it
SettingsChanged(GAIN, 10).

To conclude: if we envision the components in a treewise structure with a
camera on top, than a Set() travels upwards until it is dealt with, and at this
point in the tree SettingsChanged() is sent downward, again until it is dealt
with.

in SetAuto(Type: <String>)

Request to set Type to automatic mode.23 The result (succeeded or not) is
sent back using Value() The camera leaves automatic mode after a
successful Set().

in GetAuto(Type: <String>)

Check whether the camera supports an automatic mode for Type. The
result (yes or no) is sent back using Value().

out Value(Type: <String>, Value:<Integer>)

Answer to a Get*() or Set*(). For a Set*(), the chosen value is returned,
which is not necessarily the value requested.

out SettingNotSupported(Type: <String>)

Response to a message involving a setting that is not supported by the
camera.

out SettingsChanged(Type: <String>, Value: <Integer>)

Notification that subsequent images will be made with changed camera
settings. For zoom requests, three messages are sent; one message
notifying that the camera starts zooming (SettingsChanged(ZOOMING,
1)), one notifying the end of the zooming (SettingsChanged(ZOOMING, 0)
and a final one for broadcasting the final value (SettingsChanged(ZOOM,
1234)).

◗ port ZoomRequest(0<=noi<=1)

This port is intended to be used by the ZoomBehaviour component. All
zoom requests are forwarded to the latter component. If there is no
ZoomBehaviour component attached to this port, the Camera does not
wait for a ZoomChangeAction, but fulfils the zoom request right away. The
component supports two messages:

23 The Camera or VideoStreamDecoder component is allowed to do this in software!

 78

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

out ZoomChangeRequest(From: <String>, Value: <Integer>)

Message sent to the ZoomBehaviour component (if attached) if the
camera receives a Set(ZOOM, X) request.

in ZoomChangeAction(NewValue: <Integer>)

Answer from the ZoomBehaviour component. This is the zoom value that
will be used by the camera.

◗ port UIRenderer (0<=no<i=1)

This port can be used in order to receive an XML description of the
camera.

in GetUiDescription()

Request for an XML description

out PutUiDescription(XML : <String>)

XML description of the camera.

7.3.3. The VideoStreamDecoder Component

7.3.3.1. Description

This component receives image information from a Camera and produces
an RGBA or B/W image.

7.3.3.2. Interfaces

◗ port Component(noi=1)

Port required by the component system.

in Init()

in Connect(Port:<String>, With:<String>)

in Disconnect(Who:<String>, From:<String>)

◗ port VideoStreamUpdate(noi=1)

This port receives information from the camera.

in VideoStreamUpdate(Update: <java.lang.Object>)

 79

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

This message is sent by a camera and contains the (compressed)
information needed to generate an image. Only the VideoStreamDecoder
and the Camera need to understand the Update information.

◗ port OutputStream(noi=1)

This port is used by the video consumer for retrieving the new image
(either in RGBA or B/W format)

out NewImage(Image:<Videoimage>)

The new image.

out Stalled()

Message sent when the VideoStreamDecoder is unable to generate
(momentarily) new images. This can be caused by a stall of the camera
(notified with Stalled()), by memory constraints, …

◗ port Settings_in (0<=noi<=1)

Used for changing/requesting the value of a certain type. This port
connects with an image consumer. The VideoStreamDecoder will
deal with the request or forward the request to the camera using the
Settings_out port.

in Supports(Type: <String>)

in GetMax(Type: <String>)

in GetMin(Type: <String>)

in GetCurrent(Type: <String>)

in Set(Type: <String>, Value: <Integer>)

in SetAuto(Type: <String>)

in GetAuto(Type: <String>)

out Value(Type: <String>, Value:<Integer>)

out SettingNotSupported(Type: <String>)

out SettingsChanged(Type: <String>, Value: <Integer>)

◗ port Settings_out (noi=1)

Used for changing/requesting the value of a certain type. The
VideoStreamDecoder will deal with it or forward it to the camera.

out Supports(Type: <String>)

 80

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

out GetMax(Type: <String>)

out GetMin(Type: <String>)

out GetCurrent(Type: <String>)

out Set(Type: <String>, Value: <Integer>)

out SetAuto(Type: <String>)

out GetAuto(Type: <String>)

in Value(Type: <String>, Value:<Integer>)

in SettingNotSupported(Type: <String>)

in SettingsChanged(Type: <String>, Value: <Integer>)

7.3.4. The Prioritizer Component

7.3.4.1. Description

The Camera, as described above, will fulfil all requirements submitted
using a Set() message through the Settings port. This can lead to
conflicts: e.g. one user wants to zoom in while another wants to zoom out.
In order to deal with this, priorities and a Prioritizer component are
introduced. However, the use of a Prioritizer is optional. A Prioritizer is
used as follows:

◗ The Prioritizer is placed between a Camera and all its
VideoStreamDecoders.

◗ The Prioritizer offers two Settings port: a multiport that connects to
the VideoStreamDecoder and a normal port connected to the
Camera.

◗ Each time a request enters the multiport, the prioritizer forwards the
request to the Camera if the priority of the component/user
submitting the request is equal or higher than the last request for
that particular setting.

7.3.4.2. Interfaces

◗ port Component(noi=1)

Port required by the component system.

in Init()

in Connect(Port:<String>, With:<String>)

in Disconnect(Who:<String>, From:<String>)

 81

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

◗ multiport Settings_in (noi=1)

in Supports(Type: <String>)

in GetMax(Type: <String>)

in GetMin(Type: <String>)

in GetCurrent(Type: <String>)

in Set(Type: <String>, Value: <Integer>)

in SetAuto(Type: <String>)

in GetAuto(Type: <String>)

out Value(Type: <String>, Value:<Integer>)

out SettingNotSupported(Type: <String>)

out SettingsChanged(Type: <String>, Value: <Integer>)

◗ port Settings_out (noi=1)

out Supports(Type: <String>)

out GetMax(Type: <String>)

out GetMin(Type: <String>)

out GetCurrent(Type: <String>)

out Set(Type: <String>, Value: <Integer>)

out SetAuto(Type: <String>)

out GetAuto(Type: <String>)

in Value(Type: <String>, Value:<Integer>)

in SettingNotSupported(Type: <String>)

in SettingsChanged(Type: <String>, Value: <Integer>)

7.3.5. The Delay Component

7.3.5.1. Description

This component can be used to introduce a delay in a video stream.

 82

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

7.3.5.2. Interfaces

◗ port Component(noi=1)

Port required by the component system.

in Init()

in Connect(Port:<String>, With:<String>)

in Disconnect(Who:<String>, From:<String>)

◗ port InputStream(noi=1)

in Image(Image:<Videoimage>)

◗ port OutputStream(noi=1)

out Image(Image:<Videoimage>)

◗ port DelaySettings(noi=1)

out SetDelay(Delay:<Integer>)

7.3.6. The Switch Component

7.3.6.1. Description

This component can be used to switch a video stream on or off.

7.3.6.2. Interfaces

◗ port Component(noi=1)

Port required by the component system.

in Init()

in Connect(Port:<String>, With:<String>)

in Disconnect(Who:<String>, From:<String>)

◗ port InputStream(noi=1)

in Image(Image:<Videoimage>)

◗ port OutputStream(noi=1)

out Image(Image:<Videoimage>)

◗ port Control(noi=1)

 83

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

in Controlport(Switch:<String>)

Used for switching the port on or off.

7.3.7. The Mosaic Component

7.3.7.1. Description

A Mosaic component receives video streams from several producers and
combines them in a new video stream.

7.3.7.2. Interfaces

◗ multiport InputStream(noi=1)

A multiport that can receive images from multiple VideoStreamDecoders
(using NewImage()).

in Image(Image:<Videoimage>)

◗ port OutputStream(noi=1)

out Image(Image:<Videoimage>)

Example Message Sequence Charts

The following message sequence charts show four possible interactions
involving a Camera and one or more VideoStreamDecoders:

1. Setting up the communication between a Camera and a
UserInterface using a VideoStreamDecoder.

2. Changing a Camera setting.

3. Trying to change a setting that is not supported by a particular
Camera.

4. Changing the zoom of a Camera.

 84

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

 Figure 38: setting up the communication

 85

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

Figure 39: changing a camera setting

Figure 40: changing a setting that is not supported

 86

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

 Figure 41: changing the zoom of a camera

 87

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

7.4. Storage and Storage Controller Components

This section describes the design of the storage functionality required by
the SCSS case study of the SEESCOA project. The functionality for the
storage will be divided in two big components: the StorageController
and Storage. The former connects to the rest of the components of the
application and has some application logic included. For instance, it
receives the events sent by other components and tells to the component
Storage to put it in the database. Also, it receives queries entered by the
user for retrieving events from the database. The latter is in charge of
storing the data it receives from the StorageController and retrieving
the events that are asked by the user through this last component. The
Storage component does not have any application logic, it is just a
dummy component that sends and retrieves data from a database. Of
course both components have the interfaces requiered by the
Controller component.

7.4.1. Component StorageController

7.4.1.1. Description

The StorageController is a component that connects the Storage
with the rest of the application. It is in charge of sending the received
events to the Storage component and thus any component of the
system can potentially be connected to it. The Camera Motion
Detection components must store an alarm when they detect some
movement in a given place. We must say here that every alarm has
associated an image, i.e., there are no alarms without images. They,
images and alarms, are linked by camera id and a time stamp. The
Switch components send images to the StorageController that
have to be stored in the database. Also, the StorageController has
ports for connecting to the client in order to push a determined XML
description of an interface and also a port for connecting to the UI
Renderer component in order to push the desired data (images, alarms,
events).

The application logic that the StorageController possesses is related
mainly to the recognition of different kind of events and the corresponding
visualization. For instance, if the StorageController receives a query
for some event stored in the database, it must first communicate with the
Storage in order to extract the desired event from the database, and
once retrieved, it must push the interface to the Client component in
order to display the information in a coherent way.

It is necessary to remark that the StorageController does not have
any connection with the database. It only communicates (sends and
receives information) with the Storage component. Furthermore, it is not
responsibility of this component to send notifications to the user about

 88

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

events that have ocurred in the system, with exception with the events that
have been produced by the same StorageController component
(see Use Cases).

In summary, the StorageController component provides the following
ports for connecting with the rest of the components of the system:

◗ UI Description: it connects to the Client component.

◗ Video Out: it connects to the UI Renderer component.

◗ Query In: it connects to the Client component in order to
receive the queries from the user.

◗ Controller: it connects to the Controller component.

◗ Event Log In: it connects to any component of the system.

◗ Video Record In: it connects to the Switch components.

◗ DB Out: it connects to the Storage component.

◗ Data Out: It connects to the UI Renderer component.

The required ports are:

◗ UI Description: in Client.

◗ Video In: in UI Renderer.

◗ InOut: in the Storage component.

◗ Component: in the Controller component.

7.4.1.2. Component Description

We now give the description of the StorageController component.

Port: UI Description (single)

Out putUITree(interface: XMLDescription)

It sends an XML description of the interface that has to
be shown to the user of the system.

Port: Video Out (single)

Out sendImage(img: ImageData)

 89

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

It sends the image and its related data to the UI
Renderer in order to be shown to the user.

Port: Query In (single)

 In queryImage(time: Time; cameraId: CameraID)

It requests an image from the database.

In queryEvent(time: Time; componentID: ComponentId)

It requests an event from the database.

In queryAlarm(time: Time; cameraId: CameraID)

It requests an alarm from the database.

Port: Controller Info (single). Description is given in the Controller
component specification.

In sendTypeTo(type:String)

Out ComponentType(component: String; type: String)

In HasJoined(Who)

In HasDisJoined(Who)

In AreYouAlive()

Out Alive(Who)

Port: Event Log In (multi)

In saveEvent(event: EventData)

It stores the event into the database.

Port: Video Record In (multi)

In saveImage(img: ImageData)

It stores the image and its related info into the database.

Port: DB Out (single)

Out saveImage(img: ImageData)

It stores the image and its related info into the database.

Out saveEvent(event: EventData)

 90

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

It stores the event into the database.

Out queryAlarm(time: Time; cameraId: CameraID)

It requests an alarm (special kind of event) from the
database.

Out queryEvent(time: Time; componentID: ComponentId)

It requests an event from the database.

Out queryImage(time: Time; cameraId: CameraID)

It requests an image from the database.

In putImage(img: ImageData)

It receives an image from the database.

In putEvent(event: EventData)

It receives an event from the database.

Port: Data Out (single)

Out sendData(data: Data)

It sends data that has been retrieved from the database.

7.4.2. Component Storage

7.4.2.1. Description

The Storage component receives data from the StorageController
and stores it in the database. This data can be images, alarms or any
other kind of events that a component desires to store. This component
also can receive queries from the StorageController in order to
retrieve events from the database. The retrieval can be made by time,
component, camera ID (in the case of alarms or images), etc.

The Storage is only connected to the StorageController
component, and of course to the Controller component as well. This
component does not have any application logic. It is just a component that
stores and retrieves to and from a database.

The ports that this component has are:

◗ InOut: it connects to the StorageController component.

 91

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

◗ Controller: it connects to the Controller component.

7.4.2.2. Component Description

The description of the Storage component is as follows:

Port: InOut (single)

In saveImage(img: ImageData)

It stores the image and its related info into the database.

In saveEvent(event: EventData)

It stores the event into the database.

In queryAlarm(time: Time; cameraId: CameraID)

It retrieves an alarm (special kind of event) from the
database.

In queryEvent(time: Time; componentID: ComponentId)

It retrieves an event from the database.

In queryImage(time: Time; cameraId: CameraID)

It retrieves an image from the database.

Out putImage(img: ImageData)

It sends a retrieved image.

Out putEvent(event: EventData)

It sends a retrieved event.

Port: Controller (single). Description is given in the Controller
component specification.

In sendTypeTo(type:String)

Out ComponentType(component: String; type: String)

In HasJoined(Who)

In HasDisJoined(Who)

In AreYouAlive()

 92

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

Out Alive(Who)

7.4.3. Use Cases

7.4.3.1. Actors

◗ Client: It asks for images, alarms and/or events that have to
be retrieved from the database, and it receives the
corresponding interface.

◗ UI Renderer: It receives the retrieved data that has to be
shown to the user.

◗ Camera MD: it sends to the database alarms that have
occurred and have to be stored.

◗ Switch: It sends images to the StorageController.

◗ Any Component: It sends to the database events that have to
be stored.

◗ Storage Subsystem: It gathers the funcionality for storing
and retrieving alarms, images and other events to and from the
database.

7.4.3.2. Query Event Use Case

1. Switch asks the Storage Subsystem for an specific event
giving some parameters (time and/or component id).

2. Storage Subsystem retrieves the corresponding event from the
database.

3. Storage Subsystem chooses the adequate interface description
that has to be sent to Client.

4. Storage Subsystem sends the chosen interface description to
Client.

5. Storage Subsystem finally sends the retrieved data to UI
Renderer.

Alternative: Data cannot be retrieved

At step 2, Storage Subsystem fails to retrieve the desired data from
the database. The causes can be of several kinds:

 93

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

◗ Cause 1: There is a problem with the connection with the
database.

◗ Solution 1: Send a warning message to Client notifying
this problem and recomending to call the system
administrator.

◗ Cause 2: There is no data corresponding to the parameters
given by Client.

◗ Solution 2: Notify Client that there is no data
corresponding to the given parameters. Allow Client to
retry the operation.

7.4.3.3. Query Alarm Use Case

1. Client asks the Storage Subsystem for an specific alarm
giving some parameters (time and/or camera id).

2. Storage Subsystem retrieves the corresponding alarm and its
corresponding image from the database.

3. Storage Subsystem chooses the adequate interface description
that has to be sent to Client.

4. Storage Subsystem sends the chosen interface description to
Client.

5. Storage Subsystem finally sends the retrieved data to UI
Renderer.

Alternative: Data cannot be retrieved

The same as Query Event Use Case.

7.4.3.4. Query Image Use Case

1. Client asks the Storage Subsystem for an specific image
giving some parameters (time and/or camera id).

2. Storage Subsystem retrieves the corresponding image from the
database.

3. Storage Subsystem chooses the adequate interface description
that has to be sent to Client.

 94

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

4. Storage Subsystem sends the chosen interface description to
Client.

5. Storage Subsystem finally sends the retrieved data to UI
Renderer.

Alternative: Data cannot be retrieved

The same as Query Event Use Case.

7.4.3.5. Store Image Use Case

1. Switch sends an image and its enclosed information that have to
be stored to Storage Subsystem.

2. Storage Subsystem stores corresponding image.

Alternative: Data cannot be stored

At step 2, Storage Subsystem fails to store the image because:

◗ Cause 1: There is a problem with the connection to the
database.

◗ Solution 1: Send a warning message to Client notifying
this problem and recomending to call the system
administrator in order to solve the problem.

7.4.3.6. Store Alarm Use Case

This is the a special use case as Store Event. Alarms can be sent only by
Camera MD components.

1. Camera MD sends an alarm and its corresponding image that
have to be stored on the StorageSubsystem.

2. Storage Subsystem stores corresponding image.

Alternative: Data cannot be stored

The same as Store Image Use Case.

 95

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

7.4.3.7. Store Event Use Case

1. Any Component sends an event and its enclosed information
that have to be stored to Storage Subsystem.

2. Storage Subsystem stores corresponding event.

Alternative: Data cannot be stored

The same as Store Image Use Case.

7.4.4. MSCs

In this part we present some MSCs showing the interaction among some
of the components of the system involved in the storage or retrieving from
the database.

There are 6 scenarios that can occur:

◗ MSC1: An alarm has happened and the MD Alarm component
sends it to the StorageController in order to be stored in
the database.

◗ MSC2: In some component an event has happened which has
to be stored in the database.

◗ MSC3: An image that has been captured by a camera has to
be stored in the database.

◗ MSC4: The user needs to retrieve an image giving some
parameters. Images can be retrieved by giving the time it
occurred, the camera in which was taken, the alarm with which
it is associated (if it exists).

◗ MSC5: The user needs to retrieve an alarm and its enclosed
information that has been raised at a given.

◗ MSC6: The user needs to retrieve an event that has occurred in
a given component at a given time.

The abbreviations we use for the components is the following:

◗ UI: UI Renderer component.

◗ SC: StorageController component.

◗ S: Storage component.

◗ CMD: Camera MD component.

 96

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

◗ AC: Any component.

◗ C: Client component.

◗ SW: Switch component.

MSC1

 Figure 42: storing a motion alarm

MSC2

 Figure 43: storing an event

MSC3

MSC

 Figure 44: storing an image

 97

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

MSC4

 Figure 45: querying for an image

MSC5

Figure 46: querying for an alarm

 98

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

MSC6

 Figure 47: querying for an event

 99

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

7.5. Camera Motion Detection Component

The motion detection service is an important part of a modern camera
surveillance system. It facilitates the work of the guard (operator)
considerably, since now a part of his job is done automatically. Also,
adding motion detection to a system enables us to record only important
video sequences (when there is motion). This is an advantage for the
network load (a camera will only send images when needed) and the
storage capacity (only image sequences with motion will be recorded).

As mentioned before (chapter 6), the motion detection service will consist
of camera motion detection components. Each camera will have one
corresponding camera motion detection component instance associated
with it. This instance will analyse the video stream of the camera and
report motion24 events to the storage and eventually trigger a switch for
recording the images.

Note: in this section, the term ‘MD’ will be used extensively. This is an
abbreviation of ‘Motion Detection’.

7.5.1. Introduction on Motion Detection

This section is an introduction to the field of motion detection. It discusses
some important concepts related to this topic.

There exist different types of motion detection, some can be called
intelligent (they can spot the size, position and velocity of an object) while
others just compare two images and see if they are different.

Common terms are:

Reference frame: MD algorithms often compare the current image to a
reference frame. If they differ too much, an alarm is raised. The reference
frame could be static: this will work wel in environments with a scene that
does not change (like no lighting changes). But most algorithms adapt
their reference frame to the current frame. So, if it is getting darker, then
no alarm will be raised, since the reference frame will also get darker. Of
course, if the light is switched off, then an alarm will be raised since the
difference with the reference frame will be much bigger. An evolutive
reference frame adapts itself to a gradually changing environment.

Frames per second: MD algorithms are also characterized by the
number of frames they compare to the reference frame per second. A
good value seems to be between 6 and 8 frames per second. If you go
lower than that then some movements could go undetected. But if you go

24 Motion is a complex term, since not all motion is alarming motion. Most motion detection algorithms
have some treshold that can be set, this will ensure that there will not be an alarm for a bird that is flying
by, but that an alarm will be raised if a human walks by.

 100

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

higher than that (like 30 frames per second), then even a moving object
could go undetected, because the difference between two frames will be
small (at 30 fps, the moving object is moving very slowly, as such that the
alarming treshold will not be reached).

Pixel: MD algorithms often compare pixels and see if there is a difference
between two pixels on the same position (same x and y coordinates). Of
course this could be generalized to only looking at some pixels, and not all
pixels (like a grid of pixels applied to the image). It is not a good idea to
do MD on compressed images since we need to decompress them first to
get access to the pixels. As such, it is not good to put the compression
between25 the camera and the MD component, since the MD component
will need to decompress the image first before being able to perform its
algorithm.

Hot spot: some MD algorithms can also be configured to only monitor a
part of the entire field of view of the camera. This part is also called a
hotspot. The advantage of a hotspot is that the MD algorithm will be much
faster since it only looks at a smaller area of the complete view.

Sensitivity: MD algorithms can be configured to be much or less sensitive
to changes. This is also called a treshold: if the change in an image is
greater than a particular treshold, then an alarm is raised. This change
can be expressed in pixel change (if the pixel becomes a bit darker, this
could or could not raise an alarm) and/or in the number of pixels that have
to change (if 20 pixels have changed then this could or could not raise an
alarm).

Object “recognition”26: Sometimes you are not interested in lighting
events, but only in moving objects or persons. With a basic Motion
Detection algorithm lighting changes will raise an alarm since the
complete image will have changed.

Therefore, more intelligent algorithms are being researched: they can
detect moving objects. Besides detecting moving objects, they can also
measure their size and position. This is not really difficult: the computation
is based on comparing two images and the creation of an image change
matrix. The moving object will then be characterized as a “cluser” of
changes. This cluster is then “the moving object”. In the next step the
algorithm could calculate the position of the cluster and also its size. This
enables one to specify detection constraints as “detect moving objects of a
size between 20% of the complete viewing area and 80 % of the viewing
area”. Such constraints ensure that small objects will not be detected and
that big changes (like a lighting change) will not trigger the alarm.

25 In some cases this will however be necessary to limit the bandwidth between the camera and the motion
detection components (if they reside on different nodes).
26 Sensitivity and Object “recognition” are not the same. You could for instance have a MD sensitivity
setting that is very sensitive (the smallest change in pixel color is detected) but that will not raise an alarm
if the object causing the change is smaller than 20% of the viewing area.

 101

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

There are still some other topics in the motion detection field, but the ones
mentioned above are the important ones. Basic MD algorithms can only
be configured by setting some treshold values, while more advanced ones
can have hot spot configuration and “object detection”27 features.

7.5.2. Requirements for the Camera Motion Detection Component

This section discusses the requirements of the Camera Motion Detection
component of the SCSS. If a particular requirement is not clear, please
refer to 7.5.1. where an introduction on motion detection is given.

• Setting the reference frame: The user should be able to choose if the
reference frame is static or evolutive.

o Static: the user must be able to specify the frame that has to be
used as reference frame. To do this, he can tell the MD
component that the current frame of the camera is the
reference frame (so the MD component has to grab a frame
from the camera component)

o Evolvable: nothing has to be done. The MD grabs an image
when it is started and uses this one as the reference frame.
When running it will adapt the reference frame to the new
frames.

• Setting the frames per second: The user can set the number of
frames per second the algorithm has to process. A value of 6 to 8
seems good. Faster frame rates have a disadvantage (see the
explanation above) and do also require more processing power.

• Setting a hot spot: The user can set a hotspot on the viewable area
of the camera. The MD algorithm will then only process image
information from this area. Setting a hotspot can be done by providing
start_x, start_y coordinates with width and height information.

• Sensitivity: This is not an easy setting: what means sensitive and not
sensitive? It is nice to have a treshold setting like “Detect humans but
not animals”, but of course this is not possible for a simple MD
algorithm. Often MD algorithms offer some kind of slide bar that goes
from “detects nearly never motion” to “detects every pixel change”.
Sensitivity is thus an intuitive value, that will have an impact on the MD
algorithm.

27 Detecting cars, humans, … and their properties: color, size, direction, … is a more advanced object
recognition application and is not described here.

 102

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

We could define two kinds of threshold: a treshold indicating how
many pixels have to change, and another treshold indicating how
much these pixels have to change (how light or dark should they get
for instance). These two tresholds will then set the sensitivity of the
MD algorithm.

We have decided to offer five predefined settings: detect_no_change,
detect_large_changes, detect_changes, detect_small_changes and
detect_every_change.

• Object recognition: Is there need for some advanced Motion
Detection? Not at the moment, since it is not the goal of the project to
design image processing algorithms. As such, the Camera Motion
Detection will detect all changes, even changes in lighting conditions.
A lighting change will probably raise an alarm since the whole image is
changed (the treshold is likely to be exceeded). In a first
implementation it will not be possible to select min and max sizes of
objects that have to be monitored. So, a setting like “Do not detect
small objects (animals)” will not be possible.

• Disable motion detection while zooming: This is a requirement that
ensures that the MD algorithm will not raise a sequence of alarms if
the camera is zooming. The MD algorithm has to be enabled again
when the camera has stopped zooming.

• Report motion events to the storage: When the camera MD
component has detected some motion then this has to be reported to
the storage controller component. The camera MD component has to
report the time when the motion was detected, with the two or more
frames that contain the motion information. The user must be able to
switch off motion event reporting.

• Trigger a switch to enable recording of video: The camera MD
component must also be able to trigger a switch when motion was
detected. This switch can be attached to the storage as such that the
storage starts recording images it receives from the switch. When no
motion is detected any more, the switch has to be closed. The time
between the motion detection and the opening of the switch, and the
time between the end of motion and closing of the switch must be set
by the user.

• User interface for configuration: Since every important component
should offer a way to access its user interface, we also need this for
the camera motion detection component: it needs to export its user
interface.

7.5.3. Use cases

In what follows we will sometimes say that the camera MD component
receives images from the camera, but in fact one should read this as: the

 103

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

camera MD component receives images from a VideoStreamDecoder
(see 7.3.3.) for that camera. As such, there is always a decoder28
between the camera and the motion detection component.

7.5.3.1. Receive a new image from the camera

The camera MD component is connected to the OutputStream port of the
VideoStreamDecoder. Via this port it receives image updates. If there are
no images (the decoder sends Stalled() messages to the camera MD
component) then the camera MD component stops processing images
until new images arrive.

7.5.3.2. Zoom notification

The camera MD component is also connected to the Settings_in port of
the VideoStreamDecoder. Via this port the camera MD component will
receive notifications of the start and end29 of zoom actions on the camera.
When a zoom action is started, then the camera MD component will stop
its motion processing. When the zoom action is ended, then the camera
MD component will continue with its motion processing.

7.5.3.3. Store motion event (motion alarm)

The camera MD component can store motion alarms on the storage.
Therefore it will be connected to the storage controller (see 7.4.1.). The
camera MD component will attach following parameters to the event: a set
of images that contain the motion information (this set will minimally
contain two images), the time at which the motion was detected and its
identifier.

7.5.3.4. Trigger a switch

The camera MD component can also interact with a switch (see 7.3.6.) to
control the image flow between an image producer and an image
consumer. When motion is detected the switch can be opened after a
predefined duration. When no more motion is detected, the switch will be
closed again (also after a predefined duration). This can be used to only
record images if there is motion. See 6.2.6. for a detailed explanation on
this subject.

28 As was mentioned earlier, it is not a good idea to compress images and send them to a camera MD
component that resides on the same node as the camera. Since the camera MD component performs its
processing on uncompressed images, the images will need to be decompressed first. This is clearly a
overhead penalty. If the camera MD component resides on another node, then it is necessary to compress
images in order to keep the network bandwidth usage low.
29 Optical zooming is a mechanical action and takes some time. Therefore we talk about the ‘start’ of a
zoom action and the ‘end’ of a zoom action.

 104

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

7.5.3.5. Change settings

Other components can change the settings of the camera MD component.
Settings that can be configured are:

� Framerate: the framerate at which the images have to be
processed.

� Sensitivity: one of five predefined sensitivity settings.

� Hotspot: x, y, height and width of the hotspot box.

� Reference frame: static or evolutive.

� Enabling/disabling switch trigger.

� Duration for opening/closing switch: duration setting for closing
a switch after motion has been detected and for opening a switch
when no motion has been detected any more.

� Enabling/disabling motion alarm logging.

7.5.3.6. Exporting user interface description

The camera MD component has also an interface that can be exported for
(human) user interaction with the component.

7.5.4. Camera MD Specification

The camera MD component consists of 6 ports:

◗ Stream Input port (noi = 1)

This port is used to connect the camera MD component to the
OutputStream port of the VideoStreamDecoder component.
Via this port, the camera MD component receives image
updates (see 7.3.3.).

in NewImage(Image:<Videoimage>)

Image: a new image from the camera.

in Stalled()

If (for any reason) the decoder is not able to deliver an
image.

◗ Camera Settings port (noi = 1)

This port is used to connect the camera MD component to the
Settings_in port of the VideoStreamDecoder. Via this port, the

 105

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

camera MD will receive notifications about zoom actions (see
7.3.3.).

out Supports(Type: <String>): not used

out GetMax(Type: <String>): not used

out GetMin(Type: <String>): not used

out GetCurrent(Type: <String>): not used

out Set(Type: <String>, Value: <Integer>): not used

out SetAuto(Type: <String>): not used

out GetAuto(Type: <String>): not used

out Value(Type: <String>, Value:<Integer>): not used

in SettingNotSupported(Type: <String>): not used

in SettingsChanged(Type: <String>, Value: <Integer>)

This message is sent from the decoder to the camera
MD component to indicate that a zoom action has
started or ended. During the zooming period, the
camera MD component will not process the images.

◗ MD Settings port (noi >= 0)

The MD Settings port is used to set or get the properties of the
camera MD component. Following messages are understood:

 in GetCurrent(Type: <String>)

If a component wants to retrieve the current value for a
property, it has to send this message. Type is an
identifier indicating the property that is requested.

 in Set(Type: <String>, Value: <Object>)

This message sets a particular property of the camera
MD component. Depending on the type of property that
is being set, the contents of the value object will differ.
For instance, if the “hotspot” type is being set, then the
contents of the value object are: x, y, width and height.

 out Value(Type: <String>, Value: <Object>)

This message is sent back when a component requests
the value for a particular property.

 106

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

 Supported Types:

“framerate”, “sensitivity”, “hotspot”, “reference”, “enable
switch triggering”, “trigger durations”, “enable alarm
logging”.

 Supported Values: (Type dependent)

� framerate: value is an Integer object.

� sensitivity: value is String from the set
{“detect_no_change”,”detect_large_changes,“detect_ch
anges”,“detect_small_changes”,“detect_every_change”}

� hotspot: value is an array of Integer objects: [x, y, width,
height].

� reference: value is String from the set {“static”,
“evolvable”}.

� enable switch triggering: value is Boolean

� trigger durations: value is an array of Integer objects:
[duration after start of motion, duration after end of
motion].

� enable alarm logging: value is Boolean.

◗ Switch Trigger port (noi >= 0)

This port will be connected to the Control port of the Switch
component (see 7.3.6.). It is used to trigger the switch when
motion is detected.

out Controlport(Switch:<String>)

This message is sent from the camera MD component to a
switch component, to open or close it. The camera MD
component closes the switch if motion is detected and
reopens it after no more motion is detected.

◗ Motion Event port (noi >= 0)

This port is used to connect the camera MD component to the
Event Log In port of the StorageController component (see
7.4.1.). Through this port, the camera MD component can
store motion alarms on the storage.

out saveEvent(event: EventData)

 107

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

Message sent out to the CameraController to store an
event.

◗ UI Description port (noi = 0)

Via this port the camera MD can export a user interface
description in XML. More information on this can be found in
7.6. and 7.7.. This port will be connected to UIDescription port
of the Client component.

 108

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

7.6. UI Renderer Component

7.6.1 Requirements of the User Interface

In the design of user interfaces for embedded systems and real-time
systems, several approaches are possible. Omitting the component-
oriented approach in the first stage, we concentrated on Task design
using ConcurTaskTrees. This notation enables us to model user
interaction with the system on several levels (from coarse-grained to fine-
grained).

Traditional systems exist out of the typical multiplexer views, in which a
single screen is divided in several square boxes, each presenting a
different camera. A typical camera surveillance system application
contains hardware multiplexers to combine several video streams and
present this on a single monitor. Figures 48 and 49 give an illustration of
such a system. Also, in traditional systems there is a static user interface
available, most of the time only accessible from a single point. Our system
will provide a more flexible approach using the component system,
enabling multiple points of access, which can be extended very easily.

Figure 48: A typical camera surveillance system setup.

 109

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

Figure 49: System layout with multiplexers

Using the user interface framework the component system provides, the
importance of a ready to serve user interface is very small. Using a user
interface description language the user can choose a custom made
presentation of the user interface. Nevertheless, we will provide a
standard user interface for the system. An example of a user interface
controlling a single surveillance camera can be found in figure 50. This is
an example of a user interface for the desktop PC. This user interface will
be expanded to control several surveillance cameras, like shown in figure
51, which is a first draft version of a user interface. In section 7.6.4 there
are some XML descriptions of this user interface.

The user interface for the camera surveillance system should be focused
on the constant observation of a geographical place, enhanced with
“intelligence" embedded in the cameras (the motion detection component
for example). We can divide the functionality roughly in three user
interfaces:

1. A user interface for controlling a single camera

2. A user interface for managing and controlling a group of
cameras

3. A user interface for administration of the system.

 110

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

User interface for controlling a single camera change zoom / focus /
frame rate / hotspot for a single camera. Contains indicators when a
suspicious event is detected.

User interface for controlling or managing a group of cameras control
“group" behaviors of a set of cameras, select a particular camera for a
closer look, view geographical setting of a (set of) camera(s),. . .

User interface for administration adding, removing and editing users,
configuring surveillance system (cameras, plugins,. . .), managing bound
settings for a (set of) camera(s), . . .

Figure 50: A user interface for controlling a single surveillance camera (Desktop version)

 111

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

Figure 51: a user interface for controlling several surveillance cameras (Desktop version)

How such a user interface can be rendered onto a screen within the
component system is the subject of the next section.

 112

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

7.6.2 User Interface Components

7.6.2.1 Introduction

The User Interface Components in the component system are not static
user interfaces. They are components that receive a user interface
description and render this description to an output or interaction device.
Two advantages of this approach are:

Flexibility: the user can compose his own user interface, and the user
interface can be adapted to the target system.

Extensibility: if new components or plug-ins are integrated in the system,
and these components support a user interface, they can be graphically
controlled without further configuration. Components that are not meant to
be controlled graphically do not offer a UI description.

A very simple example of the user interface description that a UIRenderer
component can render one can find in listing 1. A more thoroughly
discussion (of the used XML descriptions) can be found in deliverable 4.3:
Generalization of a Component-Based User Interface.

Notice the “group" type of an Aio element indicates that the subtree of this
element cannot be split up in the user interface: the child elements make
up one logical part of the user interface. The Aio tag indicates an Abstract
Interface Object. To enable interaction, the description also includes which
port of which component must be notified when an event is generated by
that widget. Listing 1 defines which action has to be taken by adding a
specification for the port to be notified when the button “hotSpotButton" is
pushed.

Listing 1: A user interface description with interactive capabilities.

<?xml version="1.0" encoding="UTF-8"?>
<Aio NAME="VideoControls1181232615"TYPE="testapp.VideoControls">
 <Aio NAME="hotSpotGroup" TYPE="group">

 <Property NAME="hotSpotButton">
 <Aio NAME="Button126489797" TYPE="BUTTON">
 <Property NAME="label">set Hotspot</Property>
 <Property NAME="actionCommand">activateHotspot</Property>
 <Events>
 <Out>
 <Component NAME="CameraController05">
 <Port NAME="HotSpot">
 <In>SetNewHotSpot</In>
 </Port>
 </Component>
 </Out>
 </Events>
 </Aio>

 113

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

 </Property>
 </Aio>
</Aio>

This gives a “point-to-point" communication mechanism. It is also possible
(but not necessary) to define more than one target port for the event. This
can be done by adding several Port tags as children of the Component
tags, or if the event should be delivered to several components.
Component tags can be added as children of the Events tag.

7.6.2.2 The UIRenderer component

7.6.2.2.1 Description

The user interface component is a component that renders a user
interface description to a particular output device. This output device is not
necessarily the screen, but can also exist out of different modalities such
as sound. To enable the user interface component to adapt to the target
system constraints and modalities, we use a high-level user interface
description language. The user interface is described in XML, like shown
in listing 2. A graphical presentation of the UIRenderer component is given
in figure 52.

 Figure 52: The UIRenderer component

The UIRenderer component uses a platform and output device specific
mapping to map the abstract user interface to a concrete user interface,
using the appropriate widget set. For now these mappings can be read
from a file in which the mappings are described using XML, or from a
precompiled Java class. For each different system the specific mapping
has to be provided.

 114

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

Internally the UIRenderer exists out of several other components: the
2DUIRenderer and the 2DlayoutManager. These two components will
layout the several widgets using a constrained screen space, and render it
choosing an appropriate widget set. An overview of the structure of the
UIRenderer can be found in figure 53.

Figure 53: An overview of the UI Component (a) sends messages to the right
components as reaction to user actions as described in the user interface
description. (b) sends User Interface Descriptions and update messages to UI
Component.

This component has no application logic, it only takes a user interface
description and renders this to an output device. Application logic should
be modeled by other components. For example, consider the user
interface for a surveillance system, containing a mosaic view for 4
cameras. There should be a component defining a mosaic (taking the
input streams of 4 cameras and combining them) and providing a “User
Interface Port" which gives an XML description for the component. An
example for such a description can be found in listing 2 and a schematic
drawing in figure 54. Notice there exists a DataIn port in the UIRenderer
where updates of visualized data can be submitted, for the User Interface
to be updated.

Listing 2: A User Interface Description from the Mosaic Component

<?xml version="1.0" encoding="UTF-8"?>
<Aio NAME="MozaikControl1181232615" TYPE="MosaicControl">
 <Property NAME="Controls">
 <Aio NAME="ControlsGroup">
 <Property NAME="">

 115

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

 . . .
 </Property>
 </Aio>
 </Property>
 <Property NAME="Screens">
 <Aio NAME="ScreenGroup " TYPE="group">
 <Property NAME="screen1">
 <Aio NAME="s c r e en " TYPE="canvas">
 <Property NAME=" label ">surveillance camera 1</Property>
 <Events>
 <Out TYPE=" select “>
 <Component NAME="">
 <Port NAME="">selectCamera</Port>
 </Component>
 </Out>
 <In TYPE="update”>
 <Component NAME="">
 <Port NAME="">setFrame</Port>
 </Component>
 </In>
 </Events>
 </Aio>
 </Property>
 <!—the same for screens 2, 3 en 4 -->
 </Property>
 </Aio>
</Aio>

Figure 54: the UIRenderer and CameraMosaic components.

7.6.2.2.2 Ports

Init This will be used to initialize the UIRenderer, for example: the
mapping definitions can be loaded on initialization. These mapping
descriptions can be provided in a recompiled Java class or file(containing
an XML description of these mappings).

 116

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

UIDescription Requires Port This port will be connected to the
components that can deliver a user interface description for their
functionality. It receives the user interface description in XML.

UIStateDescription Provides Port This port provides a user interface
description containing the current state of the user interface. For example,
if a check-box is used and its state is “on", then this information will be
added to the user interface description. Such an approach lets user
interfaces migrate “on the fly", preserving the information contained in the
user interface.

PutUItree Provides Port Provides a user interface description,
expressed in an internal data structure. This is a port which will primarily
be used by other, internal components of the UIRenderer component: for
example a special purpose Layout Manager could use this to directly
manipulate the User Interface structure.

PutUITree Requires Port Requires a User Interface description,
expressed in an internal data structure.

DataIn Provides Port To Enable the user interface to be updated from
an external data source, this port can be used. It will provide the user
Interface with information and data of updated sources.

EventOut Provides Port This port connects to the EventsIn port of the
Client component. It will send certain messages to the client when user
interaction occurs. Which message will be sent is described in the user
interface description. Once received the Client component will process the
message and notify the appropriate component that the event has
occurred.

7.6.2.3 The 2DScreenRenderer component

7.6.2.3.1 Description

This component renders a user interface description on a 2 dimensional
screen, taking into account the constraints of target output device. This
component will only be used by a UIRenderer component. Other
components will have to communicate with the UIRenderer to get their
interface rendered. Possible constraints for a screen are:

◗ The size (width and height)

◗ The color depth (for example: only 4 bit colors)

◗ The refresh rate

◗ The actual resolution

 117

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

A graphical presentation can be found in figure 55.

 Figure 55: the 2DscreenRenderer component

7.6.2.3.2 Ports

Init This will be used for initialization. At this stage, default constraints
can be set or screen constraints defined in an external file can be read.

PutUITree Provides Port This delivers an adapted UI description for
presentation on a 2D screen medium.

PutUITree Requires Port This takes the portion of the user interface
description that is meant to be shown on a visual 2D screen.

SetScreenConstraint(ScreenConstraint) Port This port is used to set
the constraints which must be taken into account by this renderer.

7.6.2.4 The LayoutManager component

7.6.2.4.1 Description

It is important to state that the UIRenderer does not affect the structure of
the user interface as it is described in the user interface description it
receives. It only maps AIO's to CIO's and instantiates the UI on the target
device. To transform the structure of the UI we make use of a
LayoutManager component.

When the UIRenderer receives a user interface description it will store it in
memory in the form of a tree. This tree in combination with platform
constraint information will be forwarded to the LayoutManager component.
This component will then transform the structure of the tree keeping the
platform constraints in mind. In this way it tries to construct an optimal
structure for the user interface for the target device. When this is done the
tree will be send back to the UIRenderer for rendering it on the screen.
More information of the internal working of layoutmanagers can be found
in deliverable 4.3: “Generalization of a Component Based User Interface”.

 118

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

7.6.2.4.2 Ports

Init This will be used for initialization. At this stage default constraints can
be set or target constraints defined in an external file can be read.

PutUITree Requires Port This takes a tree represetation of the user
interface which it can transform to an optimal structure for the target
device.

PutUITree Provide Port Delivers an adapted tree representation of the
user interface for rendering by the UIRenderer.

7.6.3 Palm mobile device related User Interfaces

Suppose an operator is walking around in a building and he or she wants
to see an image from a camera on a Palm. Pointing the Palm to an
infrared device, that is available on some locations, and starting a camera
control application allows the operator to make contact with the system
and ask for an image. The system returns the requested image and it is
displayed on the screen of the mobile device. This section now describes
what is involved to get a camera image on the Palm.

7.6.3.1 An XML based Palm User Interface

When the operator connects to the system, the user settings are
initialised. Each Palm has a unique identifier that allows the system to
recognize the user, assuming that it is not going to be shared among
operators. According to the privileges of the user a XML description of the
interface is send to the Palm device, which then will be rendered on the
screen.

For now, an example application has been developed that has a user
interface description in XML stored on the server. When the client
connects to the server and makes a request, a user interface description
is sent back. To cope with the system constraints of a mobile device the
XML description has been kept as simple as possible (in particular to cope
with the memory constraints of the PDA). Listing 3 shows such a
description. This description is converted (“server-side”) by using an
appropriate XSLT.

The XSLT stylesheet adapts the original XML description by replacing the
tags with simpler tags, and removing unnecessary data out of the original
description.

Listing 3: A XML camera control user interface description.

<UI name="CAMERA CONTROL">
<B name="Select camera"><trigger method="selectCamera()"/>
<B name="View image"><trigger method="viewImage()"/>

 119

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

<B name="Set hotspot"><trigger method="setHotspot()"/>
<B name="Set frame rate"><trigger method="setFrameRate()"/>
<B name="Zoom camera"><trigger method="zoomCamera()"/>
<B name="Exit"><trigger method="exit()"/>
</UI>

This XML file is then parsed and rendered on the screen as in figure 56,
including a desktop and a Palm version.

Figure 56: The rendered user interface, on the left side a desktop version and on
the right side one for a PDA (Palm IIIc).

7.6.3.2 Getting a camera image to the Palm

Suppose the operator wants to use the zoom function of a camera. The
specific camera can be selected. If the Zoom camera button is activated,
the system receives the request for this action. From the storage the
specified image will be retrieved. In this section it is a capture from our
room.

Figure 57 shows the camera image. To get this image to be displayed on
the Palm subsequent actions have to be taken. Complying with the
system constraints for the Palm means converting the image to a 1-bit
bitmap format30, a size of 160*160 pixels and adding specific headers to
the resulting bitmap file.

30 This is a restriction forced by the used Java API for the Palm handheld device

 120

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

Figure 57: A captured camera image

A gray filter is used on the image to reduce the image to 8-bit format.
Applying a dithering filter with a given treshold value creates the 1-bit
black and white image.

This original sized image is then scaled to 160 * 160. The scaling factor in
this example is chosen to use the total Palm screen size. Figure 58 shows
the result of the image processing.

Figure 58: The original image scaled to Palm screen size

Then by adding the width and height to the hexadecimal notation of the
image the bitmap file is ready to be transmitted back to the Palm. The
Palm receives the file and adds it to the Zoom camera user interface. In
order to show the zoom slider, the image size on the Palm can be reduced
to 158*140 pixels for instance. The stylus can be used to drag the image
up to see the lower part, see figure 59.

 121

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

Figure 59: A converted camera image image in the zoom camera user interface

In the chapter about the use cases, chapter 5, there are more figures of
other possible user interfaces.

7.6.4 Additional listings

The XML descriptions, of some parts of the user interface prototype of the
surveillance system one can find in figures 50 and 51, are listed below.
Listing 4 shows the menu section of the user interface while listing 5
covers the bottom left part with the sliders.

Listing 4: Description of the menu bar.

 <AIO NAME="MenuGroup" TYPE="LineGroup">
 <Property NAME="CameraAppMenu">
 <AIO NAME="JMenuBar44555" TYPE="MenuBar">
 <Property NAME="CompressionMenu">
 <AIO NAME="JMenu4565454" TYPE="Menu">
 <Property NAME="Text">Image Compression</Property>
 <Property NAME="JPEGMenuItem">
 <AIO NAME="JMenuItem54554645" TYPE="MenuItem">
 <Property NAME="Text">JPEG</Property>
 <Events>
 <Out>
 <Component NAME="CompressionComponent">
 <Port NAME="CompressionType">
 <In>chooseJPEGCompression</In>
 </Port>
 </Component>
 </Out>
 </Events>
 </AIO>
 </Property>
 <Property NAME="NoneMenuItem">
 <AIO NAME="JMenuItem454545" TYPE="MenuItem">
 <Property NAME="Text>None</Property>
 <Events>
 <Out>
 <Component NAME="CompressionComponent">

 122

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

 <Port NAME="CompressionType">
 <In>chooseNoneCompression</In>
 </Port>
 </Component>
 </Out>
 </Events>
 </AIO>
 </Property>
 ...
 </AIO>
 </Property>
 ...
 </AIO>
 </Propert>
</AIO>

Listing 5: Description of the panel with all the sliders.

<AIO NAME="slidersGroup" TYPE="Group">
 <AIO NAME="fpsSliderGroup" TYPE="Group">
 <Property NAME="fpsSliderLabel">
 <AIO NAME="Label123" TYPE="Label">
 <Property NAME="Text">Frames per second</Property>
 </AIO>
 </Property>
 <Property NAME="fpsSlider">
 <AIO NAME="Slider1234" TYPE="Slider">
 <Property NAME="Minimum">5</Property>
 <Property NAME="Maximum">60</Property>
 <Property NAME="Value">10</Property>
 <Events>
 <Out>
 <Component NAME="Client">
 <Port NAME="Settings">
 <In>setNewFPS</In>
 </Port>
 </Component>
 </Out>
 </Events>
 </AIO>
 </Property>
 </AIO>
 <AIO NAME="focusSliderGroup" TYPE="Group">
 <Property NAME="focusSliderLabel">
 <AIO NAME="Label4556546" TYPE="Label">
 <Property NAME="Text">Focus</Property>
 </AIO>
 </Property>

 123

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

 <Property NAME="focusSlider">
 <AIO NAME="Slider1254515" TYPE="Slider">
 <Property NAME="Minimum">0</Property>
 <Property NAME="Maximum">450</Property>
 <Property NAME="Value">0</Property>
 <Events>
 <Out>
 <Component NAME="Client">
 <Port NAME="Settings">
 <In>setNewFocus</In>
 </Port>
 </Component>
 </Out>
 </Events>
 </AIO>
 </Property>
 </AIO>
 <AIO NAME="zoomSliderGroup" TYPE="Group">
 <Property NAME="zoomSliderLabel">
 <AIO NAME="Label155454" TYPE="Label">
 <Property NAME="Text">Zoom</Property>
 </AIO>
 </Property>
 <Property NAME="zoomSlider">
 <AIO NAME="Slider545454" TYPE="Slider">
 <Property NAME="Minimum">-1000</Property>
 <Property NAME="Maximum">1000</Property>
 <Property NAME="Value">-900</Property>
 <Events>
 <Out>
 <Component NAME="Client">
 <Port NAME="Settings">
 <In>setNewZoom</In>
 </Port>
 </Component>
 </Out>
 </Events>
 </AIO>
 </Property>
 </AIO>
 <AIO NAME="SliderButtonsGroup" TYPE="LineGroup">
 <Property NAME="saveSettingButton">
 <AIO NAME="Button56456564" TYPE="Button">
 <Property NAME="Label">Save Settings</Property>
 <Events>
 <Out>
 <Component NAME="Client">
 <Port NAME="Settings">
 <In>saveSettings</In>

 124

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

 </Port>
 </Component>
 </Out>
 </Events>
 </AIO>
 </Property>
 <Property NAME="loadSettingsButton">
 <AIO NAME="Button5456564" TYPE="Button">
 <Property NAME="Label">Load Settings</Property>
 <Events>
 <Out>
 <Component NAME="Client">
 <Port NAME="Settings">
 <In>loadSettings</In>
 </Port>
 </Component>
 </Out>
 </Events>
 </AIO>
 </Property>
 </AIO>
</AIO>

 125

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

7.7. Client Component

The client component is connected to all SCSS components that have a
port that can provide a user interface description. It is also connected to
the storage controller by means of a query port. This is done to let the
user perform queries on the storage via the client. At last, the client is also
connected to the UI Renderer component. Via this binding, the client tells
the UI Renderer component what to show and the UI Renderer informs
the client from particular user interface events.

The Client component contains part of the application logic: it is a kind of
glue to coordinate and connect different parts of the system. Although it
looks like a monolithic blok (a single component) it can be subdivided into
several components, controlling more specific parts of the application
logic.

The client has following ports:

� UIDescription port: this port can be connected to all SCSS
components that have to visualize their user interface.

� QueryStorage port: via this port, the client sends queries to the
storage controller. These queries are initiated by the user.

� UIOut port: this port is connected to the UI Renderer component.
It is used to send user interface descriptions for visualization and to
get user interface events.

� EventIn port this port is connected to the Event out port of the UI
Renderer. The messages sent from that port are related to the user
interface description.

 126

STWW - SEESCOA CONFIDENTIAL DOCUMENT TITLE

References

[1] Common Test Case, SEESCOA Deliverable D1.3, April 2000

[2] New Demands in Safeguards Surveillance Systems, M. Ondrik, S.
Kadner, J. Beckes,
http://www.canberra.com/literature/technical_ref/safeguards/demands.htm

[3] CCTVware, Loronix Information Systems, USA,
http://www.loronix.com/

[4] VideoSafe+, Security Management Systems, Denmark,
http://www.safecon2000.com

[5] EDR1600, EverFocus Electronics Corp., USA
http://www.everfocus.com/

[6] Intelligent Camera Project, LANL and Motorola, http://www.nis-
www.lanl.gov/~bschlei/labvis/lanlmoto.html

[7] Multimedia Sensor Fursion for Intelligent Camera Control and
Human-Computer Interaction, Mindspring,
http://www.mindspring.com/~sggoodri/dissintro.htm

[8] IQeye3, IqinVision, http://www.iqinvision.com

[9] Model 2420 Network Camera, Axis Communications,
http://www.axis.com

[10] SMACS (Smart Airlock Control System), Fastcom Technology,
http://www.fastcom.ch/security/products/SMACS.htm

[11] SFA (Smoke and Fire Alert), Fastcom Technology,
http://www.fastcom.ch/security/products/SFA.htm

[12] Component System, SEESCOA Deliverable D 3.3.b

[13] Applying UML and Patterns, Craig Larman, Prentice Hall, ISBN 0-13-
748880-7, 1998

[14] Component Composer Tool, SEESCOA Deliverable D 2.3

[15] Component-based UI development, generalization, SEESCOA
Deliverable D 4.3

http://www.canberra.com/literature/technical_ref/safeguards/demands.htm
http://www.loronix.com/
http://www.safecon2000.com/
http://www.everfocus.com/
http://www.nis-www.lanl.gov/~bschlei/labvis/lanlmoto.html
http://www.nis-www.lanl.gov/~bschlei/labvis/lanlmoto.html
http://www.mindspring.com/~sggoodri/dissintro.htm
http://www.iqinvision.com/
http://www.axis.com/
http://www.fastcom.ch/security/products/SMACS.htm
http://www.fastcom.ch/security/products/SFA.htm

	1. Introduction
	2. Existing Camera Surveillance Systems
	2.1. First systems
	2.2. Analog systems
	2.3. Hybrid systems
	2.4. Digital systems
	2.5. Current status
	Intermezzo: Specialized Surveillance

	3. Requirements
	3.1. Description
	3.2. Detailed requirements

	4. Overview
	4.1. Elements of the Camera Surveillance System
	4.2. User Interface
	4.3. Core services

	5. Use cases
	5.1 Manage Users
	5.1.1 Manage Users
	5.1.2 Add User
	5.1.3 Delete User
	5.1.4 Change User Settings

	5.2 Camera Plugin Manager
	5.2.1 Manage Bounds Settings
	5.2.2 Add Coordination Plug

	5.3 Camera Plugin Management
	5.3.1 Manage Camera
	5.3.2 Zoom in/out
	5.3.3 Set Hotspot
	5.3.4 Change Frame Rate
	5.3.5 Set Image Compression
	5.3.6 Store Settings
	5.3.7 Load Stored Settings

	5.4 Storage viewing
	5.4.1 View Events

	5.5 Task analysis using ConcurTaskTrees

	6. Architecture
	Overview of the SCSS
	Description of the SCSS components
	6.2.1. Controller
	6.2.2. Camera
	6.2.3. Zoom Behaviour
	6.2.4. Mosaic
	6.2.5. Storage
	6.2.6. Motion Detection
	6.2.7. Client
	6.2.8. User Interface

	6.3. Example
	6.3.1. Cameras
	6.3.2. Storage
	6.3.3. Motion Detection
	6.3.4. Mosaic
	6.3.5. Client and UI Renderer component

	7. Component Specification
	7.1. Controller Component
	7.1.1. Description
	7.1.2. Use Cases
	7.1.2.1. Boot up
	Phase 1: Master Component System Boot up
	Phase 2: Client boot up

	7.1.2.2. Component Join & Disjoin
	Connecting

	7.1.2.3. Unwanted Component Disconnection & Component System Disconnection

	7.1.3. Interfaces
	7.1.3.1. port Component (noi=1)
	7.1.3.2. port ComponentSystem (noi=1)
	7.1.3.3. multiport Controller (noi=1)

	7.1.4. Message Traces
	7.1.4.1. Master Component System Boot Up
	7.1.4.2. Camera Component System Boot Up

	7.2. Zoom Behaviour Component
	7.2.1. Description
	7.2.2. Use Cases
	7.2.2.1. Logging of zoom-events
	7.2.2.2. Selection of zoom events
	7.2.2.3. Coupling of Zoom Behaviours

	7.2.3. Interfaces
	7.2.3.1. port Component (noi=1)
	7.2.3.2. port Camera (noi<=1)
	7.2.3.3. port ZoomRequest (noi=1)
	7.2.3.4. multiport ZoomChange (noi=1)
	7.2.3.5. port ZoomEvent (noi>=0)
	7.2.3.6. port Behaviour (0<=noi<=1)
	7.2.3.7. port UiDescription (0<=noi<=1)

	7.2.4. Example Message Sequences
	7.2.4.1. Logging of Zoom events
	7.2.4.2. Coupling of 2 cameras
	7.2.4.3. Coupling of 3 cameras, A with B, B with C

	7.3. Image Generating Components
	7.3.1. Introduction
	7.3.2. The Camera Component
	7.3.2.1. Description
	7.3.2.2 Interfaces

	7.3.3. The VideoStreamDecoder Component
	7.3.3.1. Description
	7.3.3.2. Interfaces

	7.3.4. The Prioritizer Component
	7.3.4.1. Description
	7.3.4.2. Interfaces

	7.3.5. The Delay Component
	7.3.5.1. Description
	7.3.5.2. Interfaces

	7.3.6. The Switch Component
	7.3.6.1. Description
	7.3.6.2. Interfaces

	7.3.7. The Mosaic Component
	7.3.7.1. Description
	7.3.7.2. Interfaces

	Example Message Sequence Charts

	7.4. Storage and Storage Controller Components
	7.4.1. Component StorageController
	7.4.1.1. Description
	7.4.1.2. Component Description

	7.4.2. Component Storage
	7.4.2.1. Description
	7.4.2.2. Component Description

	7.4.3. Use Cases
	7.4.3.1. Actors
	7.4.3.2. Query Event Use Case
	7.4.3.3. Query Alarm Use Case
	7.4.3.4. Query Image Use Case
	7.4.3.5. Store Image Use Case
	7.4.3.6. Store Alarm Use Case
	7.4.3.7. Store Event Use Case

	7.4.4. MSCs
	MSC1
	MSC2
	MSC
	MSC4
	MSC5
	MSC6

	7.5. Camera Motion Detection Component
	7.5.1. Introduction on Motion Detection
	7.5.2. Requirements for the Camera Motion Detection Component
	7.5.3. Use cases
	7.5.3.1. Receive a new image from the camera
	7.5.3.2. Zoom notification
	7.5.3.3. Store motion event (motion alarm)
	7.5.3.4. Trigger a switch
	7.5.3.5. Change settings
	7.5.3.6. Exporting user interface description

	7.5.4. Camera MD Specification

	7.6. UI Renderer Component
	7.6.1 Requirements of the User Interface
	7.6.2 User Interface Components
	7.6.2.1 Introduction
	7.6.2.2 The UIRenderer component
	7.6.2.2.1 Description
	7.6.2.2.2 Ports

	7.6.2.3 The 2DScreenRenderer component
	7.6.2.3.1 Description
	7.6.2.3.2 Ports

	7.6.2.4 The LayoutManager component
	7.6.2.4.1 Description
	7.6.2.4.2 Ports

	7.6.3 Palm mobile device related User Interfaces
	7.6.3.1 An XML based Palm User Interface
	7.6.3.2 Getting a camera image to the Palm

	7.6.4 Additional listings

	7.7. Client Component

	References

